scholarly journals Murine interferon-beta receptor-mediated endocytosis and nuclear membrane binding.

1985 ◽  
Vol 82 (10) ◽  
pp. 3281-3285 ◽  
Author(s):  
V. M. Kushnaryov ◽  
H. S. MacDonald ◽  
J. J. Sedmak ◽  
S. E. Grossberg
2020 ◽  
Author(s):  
Usha Pallabi Kar ◽  
Himani Dey ◽  
Abdur Rahaman

ABSTRACTDynamins are large cytoplasmic GTPases that are targeted to specific cellular membranes which they remodel via membrane fusion or fission. Although the mechanism of target membrane selection by dynamins has been studied, the molecular basis of conferring specificity to bind specific lipids on the target membranes is not known in any of the family members. Here, we report a mechanism of nuclear membrane recruitment of Drp6 that is involved in nuclear remodeling in Tetrahymena thermophila. Recruitment of Drp6 depends on a domain that binds to cardiolipin-rich bilayers. Consistent with this, the nuclear localization of wildtype Drp6 was inhibited by depleting cardiolipin in the cell. Cardiolipin binding was blocked with a single amino acid substitution (I553M) in the membrane-binding domain of Drp6. Importantly, the I553M substitution was sufficient to block nuclear localization without affecting other properties of Drp6. Consistent with this result, co-expression of wildtype Drp6 was sufficient to rescue the localization defect of I553M variant in Tetrahymena. Inhibition of cardiolipin synthesis or perturbation in Drp6 recruitment to nuclear membrane caused defects in the formation of new macronuclei post-conjugation. Taken together, our results elucidate a molecular basis of target membrane selection by a nuclear dynamin, and establish the importance of a defined membrane-binding domain and its target lipid in facilitating nuclear expansion.


2008 ◽  
Vol 19 (1) ◽  
pp. 237-247 ◽  
Author(s):  
Karsten Gehrig ◽  
Rosemary B. Cornell ◽  
Neale D. Ridgway

The nucleoplasmic reticulum (NR), a nuclear membrane network implicated in signaling and transport, is formed by the biosynthetic and membrane curvature-inducing properties of the rate-limiting enzyme in phosphatidylcholine synthesis, CTP:phosphocholine cytidylyltransferase (CCT) α. The NR is formed by invagination of the nuclear envelope and has an underlying lamina that may contribute to membrane tubule formation or stability. In this study we investigated the role of lamins A and B in NR formation in response to expression and activation of endogenous and fluorescent protein-tagged CCTα. Similarly to endogenous CCTα, CCT-green fluorescent protein (GFP) reversibly translocated to nuclear tubules projecting from the NE in response to oleate, a lipid promoter of CCT membrane binding. Coexpression and RNA interference experiments revealed that both CCTα and lamin A and B were necessary for NR proliferation. Expression of CCT-GFP mutants with compromised membrane-binding affinity produced fewer nuclear tubules, indicating that the membrane-binding function of CCTα promotes the expansion of the NR. Proliferation of atypical bundles of nuclear membrane tubules by a CCTα mutant that constitutively associated with membranes revealed that expansion of the double-bilayer NR requires the coordinated assembly of an underlying lamin scaffold and induction of membrane curvature by CCTα.


2021 ◽  
Author(s):  
Samin Hajian ◽  
Mehrdokht Mazdeh ◽  
Fatemeh Nouri ◽  
Meysam Soleimani

Abstract Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory neuronal damages and consequent disabilities. Episodic relapses of the disease could be decreased by the interferon-beta (IFN-β) therapy in most MS patients. However, the drug response’s efficiency is variable among patients, and the precise mechanism of action of the IFN-β is not clear. This study aimed to investigate the interferon beta-receptor (IFNAR) promoter polymorphisms on response to interferon beta in MS patients. Patients were divided into either responding (n = 57) or non-responding (n = 43) groups according to interferon beta treatment and Expanded Disability Status Scale score. The Sanger sequencing method is used for genotyping. Here, we found a significant association between 65 SNP in responders and non-responders to interferon beta (p-value < 0.05). The results also showed a significant difference between the two groups of responders and non-responders to the treatment in the presence or absence of insertion before GT repeat dinucleotide microsatellite (p-value < 0.02). The present study’s obtained results suggested the genetic heterogeneity in the promoter region of IFNAR can affect response to IFN-β. However, more studies with a larger sample size are needed to demonstrate this relationship further.


Author(s):  
G. G. Maul

The chromatin of eukaryotic cells is separated from the cytoplasm by a double membrane. One obvious structural specialization of the nuclear membrane is the presence of pores which have been implicated to facilitate the selective nucleocytoplasmic exchange of a variety of large molecules. Thus, the function of nuclear pores has mainly been regarded to be a passive one. Non-membranous diaphragms, radiating fibers, central rings, and other pore-associated structures were thought to play a role in the selective filter function of the nuclear pore complex. Evidence will be presented that suggests that the nuclear pore is a dynamic structure which is non-randomly distributed and can be formed during interphase, and that a close relationship exists between chromatin and the membranous part of the nuclear pore complex.Octagonality of the nuclear pore complex has been confirmed by a variety of techniques. Using the freeze-etching technique, it was possible to show that the membranous part of the pore complex has an eight-sided outline in human melanoma cells in vitro. Fibers which traverse the pore proper at its corners are continuous and indistinguishable from chromatin at the nucleoplasmic side, as seen in conventionally fixed and sectioned material. Chromatin can be seen in octagonal outline if serial sections are analyzed which are parallel but do not include nuclear membranes (Fig. 1). It is concluded that the shape of the pore rim is due to fibrous material traversing the pore, and may not have any functional significance. In many pores one can recognize a central ring with eight fibers radiating to the corners of the pore rim. Such a structural arrangement is also found to connect eight ribosomes at the nuclear membrane.


Author(s):  
A. Sosa ◽  
L. Calzada

The dependence of nuclear metabolism on the function of the nuclear membrane is not well understood. Whether or not the function of the nuclear membrane is partial or totally responsible of the repressed template activity of human sperm nucleus has not at present been elucidated. One of the membrane-bound enzymatic activities which is concerned with the mechanisms whereby substances are thought to cross cell membranes is adenosintriphosphatase (ATPase). This prompted its characterization and distribution by high resolution photogrammetry on isolated human sperm nuclei. Isolated human spermatozoa nuclei were obtained as previously described. ATPase activity was demonstrated by the method of Wachstein and Meisel modified by Marchesi and Palade. ATPase activity was identified as dense and irregularly distributed granules confined to the internal leaflet of the nuclear membrane. Within the nucleus the appearance of the reaction product occurs as homogenous and dense precipitates in the interchromatin space.


Author(s):  
Takeshi Baba ◽  
Nobuki Shiozawa ◽  
Masao Hotch ◽  
Shinichi Ohno

Endosomes are vesicular or tubular organelles that play important roles in transports of receptors and receptor―bound ligands during receptor-mediated endocytosis. The mechanisms of endocytic transports from clathrin-coated pits to lysosomes have been studied by many investigators. However, few studies were reported about the interactions between endosomes and cytoskeletons. In this study, Fc-receptor-mediated endocytosis in macrophages are investigated by quick-freezing and deep-etching (QF-DE) method combined with gold-labeled immune complex and “replica scraping method”.


2020 ◽  
Vol 477 (14) ◽  
pp. 2715-2720
Author(s):  
Susana Castro-Obregón

The nuclear envelope is composed by an outer nuclear membrane and an inner nuclear membrane, which is underlain by the nuclear lamina that provides the nucleus with mechanical strength for maintaining structure and regulates chromatin organization for modulating gene expression and silencing. A layer of heterochromatin is beneath the nuclear lamina, attached by inner nuclear membrane integral proteins such as Lamin B receptor (LBR). LBR is a chimeric protein, having also a sterol reductase activity with which it contributes to cholesterol synthesis. Lukasova et al. showed that when DNA is damaged by ɣ-radiation in cancer cells, LBR is lost causing chromatin structure changes and promoting cellular senescence. Cellular senescence is characterized by terminal cell cycle arrest and the expression and secretion of various growth factors, cytokines, metalloproteinases, etc., collectively known as senescence-associated secretory phenotype (SASP) that cause chronic inflammation and tumor progression when they persist in the tissue. Therefore, it is fundamental to understand the molecular basis for senescence establishment, maintenance and the regulation of SASP. The work of Lukasova et al. contributed to our understanding of cellular senescence establishment and provided the basis that lead to the further discovery that chromatin changes caused by LBR reduction induce an up-regulated expression of SASP factors. LBR dysfunction has relevance in several diseases and possibly in physiological aging. The potential bifunctional role of LBR on cellular senescence establishment, namely its role in chromatin structure together with its enzymatic activity contributing to cholesterol synthesis, provide a new target to develop potential anti-aging therapies.


Sign in / Sign up

Export Citation Format

Share Document