scholarly journals Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro.

1986 ◽  
Vol 83 (7) ◽  
pp. 2114-2117 ◽  
Author(s):  
P. F. Davies ◽  
A. Remuzzi ◽  
E. J. Gordon ◽  
C. F. Dewey ◽  
M. A. Gimbrone
2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Sarah Rampersad ◽  
Fabien Hubert ◽  
Maria Umana ◽  
Silja Freitag ◽  
Nathalie Butler ◽  
...  

Author(s):  
Jonah Burke-Kleinman ◽  
Donald Maurice

Human arterial endothelial cells (HAECs) regulate their phenotype by integrating signals encoded in the frictional forces exerted by flowing blood, fluid shear stress (FSS). High laminar FSS promotes establishment of adaptive HAEC phenotype protective against atherosclerosis, whereas low or disturbed FSS cause HAECs to adopt athero-prone phenotypes. A vascular endothelial cadherin (VE cadherin)-based mechanosensory complex allows HAECs to regulate barrier function, cell morphology and gene expression in response to FSS. Previously, we reported that this mechanosensor integrated exchange protein activated by cAMP (EPAC1) and a PDE4D gene derived cyclic nucleotide phosphodiesterase (PDE), but had not identified the PDE4D variant involved. Our hypothesis here was that only one of the two ~100 kDa PDE4D variants expressed in HAECs coordinated these responses. Now, we show one unique PDE4D splice variant, PDE4D7, controls transcriptional responses of HAECs to FSS while another, PDE4D5, does not. Adaptive transcriptional responses of HAECs subjected to laminar FSS in vitro were blunted in cells in which PDE4D7 was silenced, but unaffected in cells with silenced PDE4D5. This work identifies a specific therapeutic target for the treatment or prevention of atherosclerosis and improves our understanding of the role of cAMP-signaling in modulating mechanosensory signal transduction in the vascular endothelium.


1981 ◽  
Vol 103 (3) ◽  
pp. 177-185 ◽  
Author(s):  
C. F. Dewey ◽  
S. R. Bussolari ◽  
M. A. Gimbrone ◽  
P. F. Davies

We have developed an in-vitro system for studying the dynamic response of vascular endothelial cells to controlled levels of fluid shear stress. Cultured monolayers of bovine aortic endothelial cells are placed in a cone-plate apparatus that produces a uniform fluid shear stress on replicate samples. Subconfluent endothelial cultures continuously exposed to 1–5 dynes/cm2 shear proliferate at a rate comparable to that of static cultures and reach the same saturation density (≃ 1.0–1.5 × 105 cells/cm2). When exposed to a laminar shear stress of 5–10 dynes/cm2, confluent monolayers undergo a time-dependent change in cell shape from polygonal to ellipsoidal and become uniformly oriented with flow. Regeneration of linear “wounds” in confluent monolayer appears to be influenced by the direction of the applied force. Preliminary studies indicate that certain endothelial cell functions, including fluid endocytosis, cytoskeletal assembly and nonthrombogenic surface properties, also are sensitive to shear stress. These observations suggest that fluid mechanical forces can directly influence endothelial cell structure and function. Modulation of endothelial behavior by fluid shear stresses may be relevant to normal vessel wall physiology, as well as the pathogenesis of vascular diseases, such as atherosclerosis.


2017 ◽  
Vol 9 (7) ◽  
pp. 584-594 ◽  
Author(s):  
Daisuke Yoshino ◽  
Naoya Sakamoto ◽  
Masaaki Sato

The magnitude of the relationship between shear stress (SS) and SS gradient plays an important role in regulating endothelial cell (EC) polarity and the resulting morphological changes in ECs in response to fluid flow.


Sign in / Sign up

Export Citation Format

Share Document