scholarly journals Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro.

1990 ◽  
Vol 87 (11) ◽  
pp. 4275-4279 ◽  
Author(s):  
H. Ito ◽  
S. C. Miller ◽  
M. E. Billingham ◽  
H. Akimoto ◽  
S. V. Torti ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245618
Author(s):  
Abhinav Adhikari ◽  
William Kim ◽  
Judith Davie

Skeletal muscle gene expression is governed by the myogenic regulatory family (MRF) which includes MyoD (MYOD1) and myogenin (MYOG). MYOD1 and MYOG are known to regulate an overlapping set of muscle genes, but MYOD1 cannot compensate for the absence of MYOG in vivo. In vitro, late muscle genes have been shown to be bound by both factors, but require MYOG for activation. The molecular basis for this requirement was unclear. We show here that MYOG is required for the recruitment of TBP and RNAPII to muscle gene promoters, indicating that MYOG is essential in assembling the transcription machinery. Genes regulated by MYOD1 and MYOG include genes required for muscle fusion, myomaker and myomerger, and we show that myomaker is fully dependent on activation by MYOG. We also sought to determine the role of MYOD1 in MYOG dependent gene activation and unexpectedly found that MYOG is required to maintain Myod1 expression. However, we also found that exogenous MYOD1 was unable to compensate for the loss of Myog and activate muscle gene expression. Thus, our results show that MYOD1 and MYOG act in a feed forward loop to maintain each other’s expression and also show that it is MYOG, and not MYOD1, that is required to load TBP and activate gene expression on late muscle gene promoters bound by both factors.


1981 ◽  
Vol 86 (2) ◽  
pp. 358 ◽  
Author(s):  
M. J. Galvin ◽  
C. A. Hall ◽  
D. I. McRee

1988 ◽  
Vol 255 (3) ◽  
pp. C291-C296 ◽  
Author(s):  
A. C. Nag ◽  
K. C. Chen ◽  
M. Cheng

Embryonic rat cardiac muscle cells grown in the presence of various tensions of CO (5-95%) without the presence of O2 survived and exhibited reduced cell growth, which was concentration dependent. When cardiac muscle cells were grown in the presence of a mixture of CO (10-20%) and O2 (10-20%), the growth rate of these cells was comparable to that of the control cells. Cardiac myocytes continued to beat when exposed to varying tensions of CO, except in the case of 95% CO. The cells exposed to different concentrations of CO contained fewer myofibrils of different stages of differentiation compared with the control and the culture exposed to a mixture of 20% O2 and 20% CO, with cells that contained abundant, highly differentiated myofibrils. There was no significant difference in the structural organization of mitochondria between the control and the surviving experimental cells. It is evident from the present studies that O2 is required for the optimum in vitro cellular growth of cardiac muscle. Furthermore, CO in combination with O2 at a concentration of 10 or 20% can produce optimal growth of cardiac muscle cells in culture.


2003 ◽  
Vol 14 (7) ◽  
pp. 2706-2715 ◽  
Author(s):  
Aymone Gurtner ◽  
Isabella Manni ◽  
Paola Fuschi ◽  
Roberto Mantovani ◽  
Fiorella Guadagni ◽  
...  

NF-Y is composed of three subunits, NF-YA, NF-YB, and NF-YC, all required for DNA binding. All subunits are expressed in proliferating skeletal muscle cells, whereas NF-YA alone is undetectable in terminally differentiated cells in vitro. By immunohistochemistry, we show that the NF-YA protein is not expressed in the nuclei of skeletal and cardiac muscle cells in vivo. By chromatin immunoprecipitation experiments, we demonstrate herein that NF-Y does not bind to the CCAAT boxes of target promoters in differentiated muscle cells. Consistent with this, the activity of these promoters is down-regulated in differentiated muscle cells. Finally, forced expression of the NF-YA protein in cells committed to differentiate leads to an impairment in the down-regulation of cyclin A, cyclin B1, and cdk1 expression and is accompanied by a delay in myogenin expression. Thus, our results indicate that the suppression of NF-Y function is of crucial importance for the inhibition of several cell cycle genes and the induction of the early muscle-specific program in postmitotic muscle cells.


2000 ◽  
Vol 88 (1) ◽  
pp. 337-343 ◽  
Author(s):  
James A. Carson ◽  
Lei Wei

Overloaded skeletal muscle undergoes dramatic shifts in gene expression, which alter both the phenotype and mass. Molecular biology techniques employing both in vivo and in vitro hypertrophy models have demonstrated that mechanical forces can alter skeletal muscle gene regulation. This review's purpose is to support integrin-mediated signaling as a candidate for mechanical load-induced hypertrophy. Research quantifying components of the integrin-signaling pathway in overloaded skeletal muscle have been integrated with knowledge regarding integrins role during development and cardiac hypertrophy, with the hope of demonstrating the pathway's importance. The role of integrin signaling as an integrator of mechanical forces and growth factor signaling during hypertrophy is discussed. Specific components of integrin signaling, including focal adhesion kinase and low-molecular-weight GTPase Rho are mentioned as downstream targets of this signaling pathway. There is a need for additional mechanistic studies capable of providing a stronger linkage between integrin-mediated signaling and skeletal muscle hypertrophy; however, there appears to be abundant justification for this type of research.


1981 ◽  
Vol 23 (3) ◽  
pp. 237-244 ◽  
Author(s):  
HIROYUKI KANEKO ◽  
ABE SHIN-ICHI ◽  
SHIZUO ITO

2006 ◽  
Vol 190 (2) ◽  
pp. 433-440 ◽  
Author(s):  
Harn-Shen Chen ◽  
Jia Jia ◽  
Hou-Fen Su ◽  
Hong-Da Lin ◽  
Jaw-Wen Chen ◽  
...  

The 70 kDa heat shock protein family plays important cardiac protective roles against myocardial injuries. Reduced myocardial protection is a common feature of diabetic myocardium. This study was carried out to define the changes in the 70 kDa heat shock protein family in the myocardium in the of streptozotocin-diabetes rats, and to explore the mechanisms through which diabetes alters the abundance of Hsp70/Hsc70 in cardiac muscle. In the diabetic myocardium, the abundance of Hsc70 was significantly reduced. The abundance of Hsp70 was low in cardiac muscle and was not induced in the diabetic myocardium. Unlike Hsp60, Hsp70 and Hsc70 did not augment insulin-like growth factor-I receptor signaling in cardiac muscle cells. In cultured cardiomyocytes, insulin directly increased the abundance of Hsc70, whereas insulin could not modulate Hsp70. Treating diabetic rats with insulin restored myocardial Hsc70 level, but phlorizin treatment failed to restore myocardial Hsc70. These in vivo and in vitro studies showed that downregulation of Hsc70 in diabetic myocardium was secondary to insulin deficiency. Thus, insulin played a major role in maintaining adequate expression of Hsc70 in cardiac muscle.


Sign in / Sign up

Export Citation Format

Share Document