scholarly journals Wild-type p53 is a cell cycle checkpoint determinant following irradiation.

1992 ◽  
Vol 89 (16) ◽  
pp. 7491-7495 ◽  
Author(s):  
S. J. Kuerbitz ◽  
B. S. Plunkett ◽  
W. V. Walsh ◽  
M. B. Kastan
DNA Repair ◽  
2009 ◽  
Vol 8 (11) ◽  
pp. 1264-1272 ◽  
Author(s):  
Michael J. Carrozza ◽  
Donna F. Stefanick ◽  
Julie K. Horton ◽  
Padmini S. Kedar ◽  
Samuel H. Wilson

2002 ◽  
Vol 22 (22) ◽  
pp. 7831-7841 ◽  
Author(s):  
Eugene S. Kandel ◽  
Jennifer Skeen ◽  
Nathan Majewski ◽  
Antonio Di Cristofano ◽  
Pier Paolo Pandolfi ◽  
...  

ABSTRACT Activation of Akt, or protein kinase B, is frequently observed in human cancers. Here we report that Akt activation via overexpression of a constitutively active form or via the loss of PTEN can overcome a G2/M cell cycle checkpoint that is induced by DNA damage. Activated Akt also alleviates the reduction in CDC2 activity and mitotic index upon exposure to DNA damage. In addition, we found that PTEN null embryonic stem (ES) cells transit faster from the G2/M to the G1 phase of the cell cycle when compared to wild-type ES cells and that inhibition of phosphoinositol-3-kinase (PI3K) in HEK293 cells elicits G2 arrest that is alleviated by activated Akt. Furthermore, the transition from the G2/M to the G1 phase of the cell cycle in Akt1 null mouse embryo fibroblasts (MEFs) is attenuated when compared to that of wild-type MEFs. These results indicate that the PI3K/PTEN/Akt pathway plays a role in the regulation of G2/M transition. Thus, cells expressing activated Akt continue to divide, without being eliminated by apoptosis, in the presence of continuous exposure to mutagen and accumulate mutations, as measured by inactivation of an exogenously expressed herpes simplex virus thymidine kinase (HSV-tk) gene. This phenotype is independent of p53 status and cannot be reproduced by overexpression of Bcl-2 or Myc and Bcl-2 but seems to counteract a cell cycle checkpoint mediated by DNA mismatch repair (MMR). Accordingly, restoration of the G2/M cell cycle checkpoint and apoptosis in MMR-deficient cells, through reintroduction of the missing component of MMR, is alleviated by activated Akt. We suggest that this new activity of Akt in conjunction with its antiapoptotic activity may contribute to genetic instability and could explain its frequent activation in human cancers.


1995 ◽  
Vol 130 (4) ◽  
pp. 929-939 ◽  
Author(s):  
R B Nicklas ◽  
S C Ward ◽  
G J Gorbsky

Some cells have a quality control checkpoint that can detect a single misattached chromosome and delay the onset of anaphase, thus allowing time for error correction. The mechanical error in attachment must somehow be linked to the chemical regulation of cell cycle progression. The 3F3 antibody detects phosphorylated kinetochore proteins that might serve as the required link (Gorbsky, G. J., and W. A. Ricketts. 1993. J. Cell Biol. 122:1311-1321). We show by direct micromanipulation experiments that tension alters the phosphorylation of kinetochore proteins. Tension, whether from a micromanipulation needle or from normal mitotic forces, causes dephosphorylation of the kinetochore proteins recognized by 3F3. If tension is absent, either naturally or as a result of chromosome detachment by micromanipulation, the proteins are phosphorylated. Equally direct experiments identify tension as the checkpoint signal: tension from a microneedle on a misattached chromosome leads to anaphase (Li, X., and R. B. Nicklas. 1995. Nature (Lond.). 373:630-632), and we show here that the absence of tension caused by detaching chromosomes from the spindle delays anaphase indefinitely. Thus, the absence of tension is linked to both kinetochore phosphorylation and delayed anaphase onset. We propose that the kinetochore protein dephosphorylation caused by tension is the all clear signal to the checkpoint. The evidence is circumstantial but rich. In any event, tension alters kinetochore chemistry. Very likely, tension affects chemistry directly, by altering the conformation of a tension-sensitive protein, which leads directly to dephosphorylation.


Sign in / Sign up

Export Citation Format

Share Document