scholarly journals Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase

1997 ◽  
Vol 94 (18) ◽  
pp. 9687-9692 ◽  
Author(s):  
K. Diener ◽  
X. S. Wang ◽  
C. Chen ◽  
C. F. Meyer ◽  
G. Keesler ◽  
...  
Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1338-1345 ◽  
Author(s):  
Chong-Shan Shi ◽  
Joseph M. Tuscano ◽  
Owen N. Witte ◽  
John H. Kehrl

The Bcr-Abl oncogene, found in Philadelphia chromosome-positive myelogenous leukemia (CML), activates Ras and triggers the stress-activated protein kinase (SAPK or Jun NH2-terminal kinase [JNK]) pathway. Interruption of Ras or SAPK activation dramatically reduces Bcr-Abl–mediated transformation. Here, we report that Bcr-Abl through a Ras-dependent pathway signals the serine/threonine protein kinase GCKR (Germinal Center Kinase Related) leading to SAPK activation. Either an oncogenic form of Ras or Bcr-Abl enhances GCKR catalytic activity and its activation of SAPK, whereas inhibition of GCKR impairs Bcr-Abl–induced SAPK activation. Bcr-Abl mutants that are impaired for GCKR activation are also unable to activate SAPK. Consistent with GCKR being a functional target in CML, GCKR is constitutively active in CML cell lines and found in association with Bcr-Abl. Our results indicate that GCKR is a downstream target of Bcr-Abl and strongly implicate GCKR as a mediator of Bcr-Abl in its transformation of cells.


Blood ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1338-1345 ◽  
Author(s):  
Chong-Shan Shi ◽  
Joseph M. Tuscano ◽  
Owen N. Witte ◽  
John H. Kehrl

Abstract The Bcr-Abl oncogene, found in Philadelphia chromosome-positive myelogenous leukemia (CML), activates Ras and triggers the stress-activated protein kinase (SAPK or Jun NH2-terminal kinase [JNK]) pathway. Interruption of Ras or SAPK activation dramatically reduces Bcr-Abl–mediated transformation. Here, we report that Bcr-Abl through a Ras-dependent pathway signals the serine/threonine protein kinase GCKR (Germinal Center Kinase Related) leading to SAPK activation. Either an oncogenic form of Ras or Bcr-Abl enhances GCKR catalytic activity and its activation of SAPK, whereas inhibition of GCKR impairs Bcr-Abl–induced SAPK activation. Bcr-Abl mutants that are impaired for GCKR activation are also unable to activate SAPK. Consistent with GCKR being a functional target in CML, GCKR is constitutively active in CML cell lines and found in association with Bcr-Abl. Our results indicate that GCKR is a downstream target of Bcr-Abl and strongly implicate GCKR as a mediator of Bcr-Abl in its transformation of cells.


Reproduction ◽  
2000 ◽  
pp. 377-383 ◽  
Author(s):  
L Leonardsen ◽  
A Wiersma ◽  
M Baltsen ◽  
AG Byskov ◽  
CY Andersen

The mitogen-activated protein kinase-dependent and the cAMP-protein kinase A-dependent signal transduction pathways were studied in cultured mouse oocytes during induced and spontaneous meiotic maturation. The role of the mitogen-activated protein kinase pathway was assessed using PD98059, which specifically inhibits mitogen-activated protein kinase 1 and 2 (that is, MEK1 and MEK2), which activates mitogen-activated protein kinase. The cAMP-dependent protein kinase was studied by treating oocytes with the protein kinase A inhibitor rp-cAMP. Inhibition of the mitogen-activated protein kinase pathway by PD98059 (25 micromol l(-1)) selectively inhibited the stimulatory effect on meiotic maturation by FSH and meiosis-activating sterol (that is, 4,4-dimethyl-5alpha-cholest-8,14, 24-triene-3beta-ol) in the presence of 4 mmol hypoxanthine l(-1), whereas spontaneous maturation in the absence of hypoxanthine was unaffected. This finding indicates that different signal transduction mechanisms are involved in induced and spontaneous maturation. The protein kinase A inhibitor rp-cAMP induced meiotic maturation in the presence of 4 mmol hypoxanthine l(-1), an effect that was additive to the maturation-promoting effect of FSH and meiosis-activating sterol, indicating that induced maturation also uses the cAMP-protein kinase A-dependent signal transduction pathway. In conclusion, induced and spontaneous maturation of mouse oocytes appear to use different signal transduction pathways.


Sign in / Sign up

Export Citation Format

Share Document