scholarly journals Mutations Affecting the Glycine Receptor Agonist Transduction Mechanism Convert the Competitive Antagonist, Picrotoxin, into an Allosteric Potentiator

1995 ◽  
Vol 270 (23) ◽  
pp. 13799-13806 ◽  
Author(s):  
Joseph W. Lynch ◽  
Sundran Rajendra ◽  
Peter H. Barry ◽  
Peter R. Schofield
1999 ◽  
Vol 82 (4) ◽  
pp. 2020-2023 ◽  
Author(s):  
Michael Pasternack ◽  
Mathias Boller ◽  
Belinda Pau ◽  
Matthias Schmidt

We have recently found that GABAC receptor subunit transcripts are expressed in the superficial layers of rat superior colliculus (SC). In the present study we used immunocytochemistry to demonstrate the presence of GABAC receptors in rat SC at protein level. We also investigated in acute rat brain slices the effect of GABAA and GABAC receptor agonists and antagonists on stimulus-evoked extracellular field potentials in SC. Electrical stimulation of the SC optic layer induced a biphasic, early and late, potential in the adjacent superficial layer. The late component was completely inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione or CoCl2, indicating that it was generated by postsynaptic activation. Muscimol, a potent GABAA and GABAC receptor agonist, strongly attenuated this postsynaptic potential at concentrations >10 μM. In contrast, the GABAC receptor agonist cis-aminocrotonic acid, as well as muscimol at lower concentrations (0.1–1 μM) increased the postsynaptic potential. This increase was blocked by (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid, a novel competitive antagonist of GABAC receptors. Our findings demonstrate the presence of functional GABAC receptors in SC and suggest a disinhibitory role of these receptors in SC neuronal circuitry.


2006 ◽  
Vol 220 (1-2) ◽  
pp. 95-105 ◽  
Author(s):  
Han Xu ◽  
Wei Wang ◽  
Zheng-Quan Tang ◽  
Tian-Le Xu ◽  
Lin Chen

2007 ◽  
Vol 24 (4) ◽  
pp. 503-511 ◽  
Author(s):  
J.M. RENNA ◽  
C.E. STRANG ◽  
F.R. AMTHOR ◽  
K.T. KEYSER

Strychnine is considered a selective competitive antagonist of glycine gated Cl− channels (Saitoh et al., 1994) and studies have used strychnine at low micromolar concentrations to study the role of glycine in rabbit retina (Linn, 1998; Protti et al., 2005). However, other studies have shown that strychnine, in the concentrations commonly used, is also a potent competitive antagonist of α7 nicotinic acetylcholine receptors (nAChRs; Matsubayashi et al., 1998). We tested the effects of low micromolar concentrations of strychnine and 3-[2′-phosphonomethyl[1,1′-biphenyl]-3-yl] alanine (PMBA), a specific glycine receptor blocker (Saitoh et al., 1994; Hosie et al., 1999) on the activation of both α7 nAChRs on retinal ganglion cells and on ganglion cell responses to a light flash. Extracellular recordings were obtained from ganglion cells in an isolated retina/choroid preparation and 500 μM choline was used as an α7 agonist (Alkondon et al., 1997). We recorded from brisk sustained and brisk transient OFF cells, many of which have been previously shown to have α7 receptors (Strang et al., 2005). Further, we tested the effect of strychnine, PMBA and α-bungarotoxin on the binding of tetramethylrhodamine α-bungarotoxin in the inner plexiform layer. Our data indicates that strychnine, at doses as low as 1.0 μM, can inhibit the α7 nAChR-mediated response to choline, but PMBA at concentrations as high as 0.4 μM does not. Binding studies show strychnine and α-bungarotoxin inhibit binding of labeled α-bungarotoxin in the IPL. Thus, the effects of strychnine application may be to inhibit glycine receptors expressed by ganglion cell or to inhibit amacrine cell α7 nAChRs, both of which would result in an increase in the ganglion cell responses. Further research will be required to disentangle the effects of strychnine previously believed to be caused by a single mechanism of glycine receptor inhibition.


2007 ◽  
Vol 282 (49) ◽  
pp. 36057-36067 ◽  
Author(s):  
Stephan A. Pless ◽  
Mohammed I. Dibas ◽  
Henry A. Lester ◽  
Joseph W. Lynch

Models describing the structural changes mediating Cys loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric α1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19′ or 22′ positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19′C increased by ∼20%, and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and β-alanine were weak partial agonists at the α1R19′C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or β-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22′C residue. Thus, results from two separate labeled residues support the conclusion that the glycine receptor M2 domain responds with distinct conformational changes to activation by different agonists.


2009 ◽  
Vol 57 (5-6) ◽  
pp. 551-555 ◽  
Author(s):  
Hai Xia Zhang ◽  
Ariel Lyons-Warren ◽  
Liu Lin Thio

1995 ◽  
Vol 74 (3) ◽  
pp. 1109-1117 ◽  
Author(s):  
K. C. Cowley ◽  
B. J. Schmidt

1. The role of inhibitory amino acid transmission in the coordination and generation of rhythmic motor activity was examined with the use of an in vitro neonatal rat spinal cord preparation. Before adding gamma-aminobutyric acid (GABA) or glycine receptor agonists and antagonists, rhythmic motor activity was induced by bath application of acetylcholine (ACh), N-methyl-D,L-aspartate (NMA), or serotonin (5-HT) while monitoring bilateral ankle flexor and extensor electroneurograms (ENGs). The timing of rhythmic flexor and extensor discharge was consistent with that seen during overground locomotion in 27% of 84 bath applications of these substances (n = 65 preparations). 2. Subsequent addition of the GABAA receptor agonist muscimol, the GABAB receptor agonist baclofen, or glycine, abolished rhythmic activity in 95% of the tested applications. 3. GABAB receptor blockade did not disrupt alternating patterns of ENG discharge. However, addition of the GABAA receptor antagonist bicuculline, or the glycine receptor antagonist strychnine, transformed alternating flexor-extensor and left-right activity into patterns characterized by bilaterally synchronous rhythmic activation of all hindlimb ENGs. The onset of individual ENG bursts was more abrupt following bicuculline or strychnine. Strychnine also synchronized high-frequency (4-8 Hz) packets of rhythmic discharge within ENG bursts. 4. Some preparations developed synchronous, but unstable, rhythmic activity in the presence of bicuculline or strychnine alone. However, NMA, 5-HT, or ACh was usually required in addition to these antagonists to promote sustained rhythmic activity.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document