scholarly journals Phosphatidate Phosphohydrolase Catalyzes the Hydrolysis of Ceramide 1-Phosphate, Lysophosphatidate, and Sphingosine 1-Phosphate

1996 ◽  
Vol 271 (28) ◽  
pp. 16506-16509 ◽  
Author(s):  
David W. Waggoner ◽  
Antonio Gómez-Muñoz ◽  
Jay Dewald ◽  
David N. Brindley
2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Nitai C. Hait ◽  
Aparna Maiti

Inflammation is part of our body’s response to tissue injury and pathogens. It helps to recruit various immune cells to the site of inflammation and activates the production of mediators to mobilize systemic protective processes. However, chronic inflammation can increase the risk of diseases like cancer. Apart from cytokines and chemokines, lipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), contribute to inflammation and cancer. S1P is an important player in inflammation-associated colon cancer progression. On the other hand, C1P has been recognized to be involved in cancer cell growth, migration, survival, and inflammation. However, whether C1P is involved in inflammation-associated cancer is not yet established. In contrast, few studies have also suggested that S1P and C1P are involved in anti-inflammatory pathways regulated in certain cell types. Ceramide is the substrate for ceramide kinase (CERK) to yield C1P, and sphingosine is phosphorylated to S1P by sphingosine kinases (SphKs). Biological functions of sphingolipid metabolites have been studied extensively. Ceramide is associated with cell growth inhibition and enhancement of apoptosis while S1P and C1P are associated with enhancement of cell growth and survival. Altogether, S1P and C1P are important regulators of ceramide level and cell fate. This review focuses on S1P and C1P involvement in inflammation and cancer with emphasis on recent progress in the field.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mariusz Z. Ratajczak ◽  
ChiHwa Kim ◽  
Anna Janowska-Wieczorek ◽  
Janina Ratajczak

Theα-chemokine stromal derived factor 1 (SDF-1), which binds to the CXCR4 and CXCR7 receptors, directs migration and homing of CXCR4+hematopoietic stem/progenitor cells (HSPCs) to bone marrow (BM) and plays a crucial role in retention of these cells in stem cell niches. However, this unique role of SDF-1 has been recently challenged by several observations supporting SDF-1-CXCR4-independent BM homing. Specifically, it has been demonstrated that HSPCs respond robustly to some bioactive lipids, such as sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), and migrate in response to gradients of certain extracellular nucleotides, including uridine triphosphate (UTP) and adenosine triphosphate (ATP). Moreover, the responsiveness of HSPCs to an SDF-1 gradient is enhanced by some elements of innate immunity (e.g., C3 complement cascade cleavage fragments and antimicrobial cationic peptides, such as cathelicidin/LL-37 orβ2-defensin) as well as prostaglandin E2 (PGE2). Since all these factors are upregulated in BM after myeloblative conditioning for transplantation, a more complex picture of homing emerges that involves several factors supporting, and in some situations even replacing, the SDF-1-CXCR4 axis.


2005 ◽  
Vol 68 (2) ◽  
pp. 330-335 ◽  
Author(s):  
Benjamin J. Pettus ◽  
Kazuyuki Kitatani ◽  
Charles E. Chalfant ◽  
Tarek A. Taha ◽  
Toshihiko Kawamori ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 554-554 ◽  
Author(s):  
Chihwa Kim ◽  
Wu Wan ◽  
Rui Liu ◽  
Magdalena Kucia ◽  
Mary J. Laughlin ◽  
...  

Abstract Abstract 554 The stromal derived factor-1 (SDF-1)–CXCR4 axis plays an unquestioned role in developmental migration of hematopoietic stem cells (HSPCs) and their retention in the bone marrow (BM). However, changes in the SDF-1 gradient between BM and peripheral blood (PB) do not always support its having a crucial role as chemoattractant for mobilization or homing of HSPCs. As demonstrated by others (e.g., Bone Marrow Transplantation 2003; 31:651–654, and Transfus Apher Sci 2009;40:159) and us (Leukemia 2010;24:976–985) the plasma SDF-1 level does not correlate with mobilization of HSPCs. On the other hand, there is increasing doubt about an exclusive role for SDF-1 in homing of HSPCs in BM. This is based on evidence that i) CXCR4−/− fetal liver HSPCs may home to BM in an SDF-1–independent manner (Immunity 1999;10:463-471), ii) homing of murine HSPCs made refractory to SDF-1 by incubation and co-injection with a CXCR4 receptor antagonist is normal or only mildly reduced (Science 2004;305:1000), and finally iii) HSPCs in which CXCR4 has been knocked down by means of an SDF-1 intrakine strategy also engraft in lethally irradiated recipients (Blood 2000;96:2074–,2080). All this strongly suggests the existence of other factors involved in the mobilization and homing of HSPCs. Moreover, while SDF-1 is a potent chemoattractant for HSPCs when employed at supraphysiological concentrations in vitro, as a peptide it is highly susceptible to degradation by proteases that are elevated, for example, in PB during stem cell mobilization or in the BM microenvironment after myeloablative conditioning for transplantation. Employing ELISA for detection in the present study, we observed insignificant changes in SDF-1 level both in PB during mobilization and in BM after myeloablative conditioning. We also found that mobilized PB (mPB) plasma as well as conditioned media (CM) from lethally irradiated mice chemoattract HSPCs in an SDF-1–independent manner as demonstrated by i) normal chemotaxis of AMD3100 pre-treated cells and ii) preservation of chemotactic activity of plasma and BM-derived CM following heat inactivation. However, the chemotactic activity of mPB plasma and BM CM was inhibited after stripping by activated charcoal. This suggested the involvement of small molecule bioactive lipids. It is known that sphingolipids, which are important components of cell membranes, give rise to two bioactive derivatives, sphingosine-1 phosphate (S1P) and ceramide-1 phosphate (C1P), with S1P already identified as a chemoattractant for HSPCs (Ann N Y Acad Sci. 200;1044:84–89). To our surprise, we found that C1P is also a strong chemoattractant for human and murine HSPCs. In addition, we observed that at physiological concentrations both these bioactive lipids i) activate phosphorylation of MAPKp42/44 and AKT in HSPCs, ii) induce expression of matrix metalloproteinases (MMPs), and iii) modulate adhesion to stroma and endothelium. Interestingly, by employing ELISA and/or mass spectophotometry we found that, while the S1P level increases in PB during mobilization, the C1P level increases in BM after myeloablative conditioning for transplantation. Based on these findings, we propose a new paradigm in which the S1P:C1P ratio plays a role in mobilization and homing of HSPCs. While S1P is a major chemoattractant that directs egress of HSPCs from BM into PB, C1P released from damaged cells in BM after myeloablative conditioning creates a homing gradient for circulating HSPCs. We also postulate that the S1P:C1P ratio plays a more universal role and is involved in regulating migration of other types of stem cells, such as circulating mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and very small embryonic-like (VSEL) stem cells. Accordingly, while S1P plays a role in egress of stem cells into PB, C1P released from damaged cells (e.g., in infarcted myocardium or brain tissue after stroke) chemoattracts circulating stem cells for potential repair. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 84 (1) ◽  
pp. e69 ◽  
Author(s):  
Yoshikazu Uchida ◽  
Young-Il Kim ◽  
Ho Seong Seo ◽  
Jong Youl Kim ◽  
Kyoung-Oh Shin ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2958-2958
Author(s):  
Ahmed Abdel-Latif ◽  
Anush V Karapetyan ◽  
Chihwa Kim ◽  
Mariusz Z Ratajczak

Abstract Abstract 2958 Background. Hematopoietic stem progenitor cells (HSPCs) are retained in bone marrow (BM) niches in stromal-derived growth factor-1 (SDF-1)–CXCR4 receptor axis-dependent manner. While a role for the SDF-1–CXCR4 axis in the retention of HSPCs in BM under steady state conditions is undisputed, recent evidence confirms that due to induction of proteolytic microenvironment in BM after myeloablative radio-chemotherapy, SDF-1 level in BM decreases (Leukemia 2011, doi: 10.1038/leu.2011.185) which supports the potential role of other non-SDF-1-mediated homing mechanisms. The cumulative evidence indicates that gradients of bioactive lipids, such as sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), are important homing factors. To support this further we demonstrated recently that S1P and C1P are upregulated in BM after conditioning for transplantation (Leukemia 2011, doi: 10.1038/leu.2011.185). Hypothesis. Based on the fact that SDF-1, S1P and C1P are present at relatively high concentrations in umbilical cord blood (UCB) and mobilized peripheral blood (mPB) plasma, they may desensitize responsiveness of HSPCs to BM homing gradients of SDF-1, S1P and C1P. Experimental approach. Based on this we i) measured concentration of SDF-1, S1P and C1P in BM aspirates, mPB and UCB, ii) evaluated chemotactic responsiveness of BM-, UCB- and mPB-derived HSPCs to homing gradients of SDF-1, S1P and C1P and iii) investigated molecular mechanisms potentially involved in this phenomenon by examining the surface expression of CXCR4 and S1P receptors 1–5 (S1PR1-5) at baseline and following exposure to appropriate ligands. Finally, we modulated the expression of S1PR1-5 on HSPCs and their responsiveness to chemotactic gradients by removal of S1PR1-5 ligands from the culture medium. Results. The highest expression of S1PR1-5 was detected on the surface of BM-derived CD34+/Lin− cells as compared to mPB and UCB counterparts. The downregulation of S1PR1-5 on mPB- and UCB-derived BM CD34+Lin− cells correlated with elevated level of circulating S1P in UCB and mPB plasma. Next, we found that BM-derived HSPCs responded more robustly to S1P and C1P as compared to SDF-1 when these chemoattractants were employed at physiologically relevant concentrations. Addition of S1P to the BM-derived HSPCs or incubation of BM HSPCs in S1P and C1P rich UCB or mPB plasma lead to downregulation of S1PR1-5 and desensitized their responsiveness to S1P and C1P, but not SDF-1 gradient. The expression of S1PR1-5 and responsiveness to S1P gradient by UCB- and mPB-derived HSPCs, however, could be re-established after incubating HSPCs in S1P-free medium. At the same time, since SDF-1 concentration in mPB and UCB is very low, the responsiveness of mPB- and UCB-derived HSPCs to SDF-1 gradient was not affected. Conclusions. We demonstrate, for the first time, significant differences in responsiveness of HSPCs from different sources to homing gradients of bioactive lipids. The relatively high concentration of S1P and C1P in mPB and UCB plasma may potentially desensitize responsiveness of HSPCs to BM homing gradients of bioactive lipids and interfere with their homing. These observations will have substantial clinical implications in HSPCs' transplantation. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 340 (3) ◽  
pp. 677-686 ◽  
Author(s):  
Renata JASINSKA ◽  
Qiu-Xia ZHANG ◽  
Carlos PILQUIL ◽  
Indrapal SINGH ◽  
James XU ◽  
...  

Lipid phosphate phosphohydrolase (LPP)-1 cDNA was cloned from a rat liver cDNA library. It codes for a 32-kDa protein that shares 87 and 82% amino acid sequence identities with putative products of murine and human LPP-1 cDNAs, respectively. Membrane fractions of rat2 fibroblasts that stably expressed mouse or rat LPP-1 exhibited 3.1-3.6-fold higher specific activities for phosphatidate dephosphorylation compared with vector controls. Increases in the dephosphorylation of lysophosphatidate, ceramide 1-phosphate, sphingosine 1-phosphate and diacylglycerol pyrophosphate were similar to those for phosphatidate. Rat2 fibroblasts expressing mouse LPP-1 cDNA showed 1.6-2.3-fold increases in the hydrolysis of exogenous lysophosphatidate, phosphatidate and ceramide 1-phosphate compared with vector control cells. Recombinant LPP-1 was located partially in plasma membranes with its C-terminus on the cytosolic surface. Lysophosphatidate dephosphorylation was inhibited by extracellular Ca2+ and this inhibition was diminished by extracellular Mg2+. Changing intracellular Ca2+ concentrations did not alter exogenous lysophosphatidate dephosphorylation significantly. Permeabilized fibroblasts showed relatively little latency for the dephosphorylation of exogenous lysophosphatidate. LPP-1 expression decreased the activation of mitogen-activated protein kinase and DNA synthesis by exogenous lysophosphatidate. The product of LPP-1 cDNA is concluded to act partly to degrade exogenous lysophosphatidate and thereby regulate its effects on cell signalling.


ChemInform ◽  
2000 ◽  
Vol 31 (52) ◽  
pp. no-no
Author(s):  
Zdzislaw M. Szulc ◽  
Yusuf A. Hannun ◽  
Alicja Bielawska

Sign in / Sign up

Export Citation Format

Share Document