scholarly journals Role of the Isoforms of CCAAT/Enhancer-binding Protein in the Initiation of Phosphoenolpyruvate Carboxykinase (GTP) Gene Transcription at Birth

1997 ◽  
Vol 272 (42) ◽  
pp. 26306-26312 ◽  
Author(s):  
Colleen Croniger ◽  
Michael Trus ◽  
Keren Lysek-Stupp ◽  
Hannah Cohen ◽  
Yan Liu ◽  
...  
1994 ◽  
Vol 266 (4) ◽  
pp. E560-E566 ◽  
Author(s):  
J. E. Friedman

The objective of these studies was to determine the molecular basis for the activation of phosphoenolpyruvate carboxykinase (PEPCK) gene transcription during prolonged submaximal exercise. Mice were fed a high-carbohydrate diet for 1 wk and exercised continuously by swimming for up to 120 min. The level of hepatic PEPCK mRNA increased progressively during exercise, reaching 510% above control, whereas transcription of the PEPCK gene increased 1,000%, before decreasing to control levels within 60 min of recovery. In transgenic mice carrying a chimeric gene consisting of the PEPCK promoter linked to a reporter gene for bovine growth hormone (bGH), PEPCK(-460)-bGH, the level of hepatic bGH mRNA increased by 490% in response to exercise, similar to the increase in the expression of the native PEPCK gene. However, in transgenic mice with a deletion of the glucocorticoid regulatory unit, PEPCK(-355)-bGH, bGH mRNA did not increase above control values. In transgenic mice with a block mutation in adenosine 3',5'-cyclic monophosphate (cAMP) regulatory regions -90/-82 and -250/-234, PEPCK cAMP response element 1 (CRE-1)/P3(1)-bGH, exercise increased bGH mRNA 260% above controls. Adrenalectomy (Adx) had no effect on PEPCK mRNA levels in nonexercised mice, whereas in adrenalectomized (Adx)-exercised mice, PEPCK mRNA increased only 80% above basal, and, in Adx mice injected with dexamethasone, PEPCK mRNA increased with exercise 570% above controls. Exercise was also associated with a large increase in transcription of the gene for the transcription factor CCAAT/enhancer-binding protein beta (C/EBP-beta) and a smaller rise in transcription of c-jun gene, both of which returned to control levels during recovery.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 10 (12) ◽  
pp. 6264-6272
Author(s):  
E A Park ◽  
W J Roesler ◽  
J Liu ◽  
D J Klemm ◽  
A L Gurney ◽  
...  

Previous studies have identified a region in the promoter of the gene for phosphoenolpyruvate carboxykinase (GTP) (PEPCK) (positions -460 to +73) containing the regulatory elements which respond to cyclic AMP, glucocorticoids, and insulin and confer the tissue- and developmental stage-specific properties to the gene. We report that CCAAT/enhancer-binding protein (C/EBP) binds to the cyclic AMP-responsive element CRE-1 as well as to two regions which have been previously shown to bind proteins enriched in liver nuclei. The DNase I footprint pattern provided by the recombinant C/EBP was identical to that produced by a 43-kDa protein purified from rat liver nuclear extracts, using a CRE oligonucleotide affinity column, which was originally thought to be the CRE-binding protein CREB. Transient contransfection experiments using a C/EBP expression vector demonstrated that C/EBP could trans activate the PEPCK promoter. The trans activation occurred through both the upstream, liver-specific protein-binding domains and the CRE. The CRE-binding protein bound only to CRE-1 and not to the upstream C/EBP-binding sites. The results of this study, along with physiological properties of C/EBP, indicate an important role for this transcription factor in providing the PEPCK gene with several of its regulatory characteristics.


2014 ◽  
Vol 45 (8) ◽  
pp. 919-932 ◽  
Author(s):  
Jörg C. Gerlach ◽  
Patrick Over ◽  
Hubert G. Foka ◽  
Morris E. Turner ◽  
Robert L. Thompson ◽  
...  

2005 ◽  
Vol 25 (5) ◽  
pp. 1971-1979 ◽  
Author(s):  
Kenji Hata ◽  
Riko Nishimura ◽  
Mio Ueda ◽  
Fumiyo Ikeda ◽  
Takuma Matsubara ◽  
...  

ABSTRACT Although both osteoblasts and adipocytes have a common origin, i.e., mesenchymal cells, the molecular mechanisms that define the direction of two different lineages are presently unknown. In this study, we investigated the role of a transcription factor, CCAAT/enhancer binding protein β (C/EBPβ), and its isoform in the regulation of balance between osteoblast and adipocyte differentiation. We found that C/EBPβ, which is induced along with osteoblast differentiation, promotes the differentiation of mesenchymal cells into an osteoblast lineage in cooperation with Runx2, an essential transcription factor for osteogenesis. Surprisingly, an isoform of C/EBPβ, liver-enriched inhibitory protein (LIP), which lacks the transcriptional activation domain, stimulates transcriptional activity and the osteogenic action of Runx2, although LIP inhibits adipogenesis in a dominant-negative fashion. Furthermore, LIP physically associates with Runx2 and binds to the C/EBP binding element present in the osteocalcin gene promoter. These data indicate that LIP functions as a coactivator for Runx2 and preferentially promotes the osteoblast differentiation of mesenchymal cells. Thus, identification of a novel role of the C/EBPβ isoform provides insight into the molecular basis of the regulation of osteoblast and adipocyte commitment.


Sign in / Sign up

Export Citation Format

Share Document