scholarly journals Cycloheximide-induced T-cell Death Is Mediated by a Fas-associated Death Domain-dependent Mechanism

1999 ◽  
Vol 274 (11) ◽  
pp. 7245-7252 ◽  
Author(s):  
Damu Tang ◽  
Jill M. Lahti ◽  
Jose Grenet ◽  
Vincent J. Kidd
2002 ◽  
Vol 196 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Nicole Cusson ◽  
Sarah Oikemus ◽  
Elizabeth D. Kilpatrick ◽  
Leslie Cunningham ◽  
Michelle Kelliher

Fas and the tumor necrosis factor receptor (TNFR)1 regulate the programmed cell death of lymphocytes. The death domain kinase, receptor interacting protein (rip), is recruited to the TNFR1 upon receptor activation. In vitro, rip−/− fibroblasts are sensitive to TNF-induced cell death due to an impaired nuclear factor κB response. Because rip−/− mice die at birth, we were unable to examine the effects of a targeted rip mutation on lymphocyte survival. To address the contribution of RIP to immune homeostasis, we examined lethally irradiated mice reconstituted with rip−/− hematopoietic precursors. We observed a decrease in rip−/− thymocytes and T cells in both wild-type C57BL/6 and recombination activating gene 1−/− irradiated hosts. In contrast, the B cell and myeloid lineages are unaffected by the absence of rip. Thus, the death domain kinase rip is required for T cell development. Unlike Fas-associated death domain, rip does not regulate T cell proliferation, as rip−/− T cells respond to polyclonal activators. However, rip-deficient mice contain few viable CD4+ and CD8+ thymocytes, and rip−/− thymocytes are sensitive to TNF-induced cell death. Surprisingly, the rip-associated thymocyte apoptosis was not rescued by the absence of TNFR1, but appears to be rescued by an absence of TNFR2. Taken together, this study implicates RIP and TNFR2 in thymocyte survival.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 194-201 ◽  
Author(s):  
Patrick Ducoroy ◽  
Olivier Micheau ◽  
Sylvain Perruche ◽  
Laurence Dubrez-Daloz ◽  
Daniel de Fornel ◽  
...  

Abstract The deoxyspergualin derivative LF 15-0195 has demonstrated some efficacy in animal models of autoimmune and graft-versus-host diseases and is currently tested in clinics. The molecular mechanisms of LF 15-0195 immunosuppressive activity remained unknown. We show that exposure to LF 15-0195 sensitizes Jurkat T cells to apoptosis induced by an agonistic anti-CD95 antibody (CH11 clone) and by the cytokine TNF-related apoptosis-inducing ligand. LF 15-0195 does not demonstrate any significant effect on the postmitochondrial activation of caspases, nor does it modify overall expression of CD95, Fas-associated death domain, and procaspase-8. The compound facilitates the recruitment of these molecules to the death-inducing signaling complex (DISC) and enhances caspase-8 and -10 activation, thus increasing cytochrome c and direct IAP binding with low pI (DIABLO)/Smac mitochondrial release. LF 15-0195 also sensitizes Jurkat T cells to CD3-mediated apoptosis, an in vitro model for activation-induced T-cell death (AICD). LF 15-0195–mediated sensitization to AICD was further confirmed in human peripheral T cells exposed to anti-CD3 antibodies, then cultured in the presence of interleukin-2. In these cells, LF 15-0195 increased apoptosis triggered by either anti-CD95 antibodies or CD3 restimulation, whereas no effect was observed on “passive apoptosis.” Finally, in bone marrow recipient mice, LF 15-0195 enhanced allogeneic donor T-cell death, which required a functional CD95 pathway. These results suggest that LF 15-0195 sensitizes T cells to AICD by increasing caspase activation at the DISC level in response to CD95 engagement. This original mechanism, together with LF 15-0195 efficacy in various disease models, makes this compound a promising immunosuppressive drug.


Sign in / Sign up

Export Citation Format

Share Document