scholarly journals Characterization of the Self Association ofAvian SarcomaVirus Integrase by Analytical Ultracentrifugation

1999 ◽  
Vol 274 (46) ◽  
pp. 32842-32846 ◽  
Author(s):  
Jacqueline Coleman ◽  
Steven Eaton ◽  
George Merkel ◽  
Anna Marie Skalka ◽  
Thomas Laue
1983 ◽  
Vol 209 (1) ◽  
pp. 107-115 ◽  
Author(s):  
H N Fernández ◽  
J M Delfino

Bovine somatotropin, at pH 8.5 in 0.02 M-Bicine [NN-bis-(2-hydroxyethyl)glycine]/0.09M-NaCl, showed by frontal analysis the characteristics of a rapid monomer-dimer equilibrium whose dissociation constant was estimated to be 6.6×10(-6)M. Reaction of the hormone with dimethyl suberimidate lead to covalent cross-linking of the dimeric species. Under the conditions chosen (0.4 mg of bifunctional imidate and 1 mg of protein/ml at room temperature for 1 h) the cross-linked dimers accounted for 26% of the total protein, and these were isolated by molecular sieving in 0.29M-NH3/0.12M-NaCl. Covalent stabilization greatly diminished the growth-promoting activity and the ability to interact with somatogenic sites in both rat liver in vivo and rabbit liver microsomal fractions. Evidence indicating a non-critical role for amino groups involved in the covalent cross-linking was provided by a nearly equivalent derivative obtained after reaction with 3,3′-dithiobispropionimidate, which had substantial hormonal activity upon cleavage of the disulphide links. Conversely, immunological reactivity as demonstrated by radioimmunoassay was not affected by cross-linking. Details of the least-squares procedure employed to evaluate the self-association equilibrium constant has been deposited as Supplement SUP 50115 (7 pages) with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1981) 193,5.


2005 ◽  
Vol 6 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Jonathan P. A. Wood ◽  
Stephanie A. Capaldi ◽  
Mark A. Robinson ◽  
Andrew J. Baron ◽  
Nicola J. Stonehouse

The use of bacteriophages as experimental tools allows the investigation of interactions between components at the molecular level that are often not possible in more complex virus systems. The bacteriophage φ29 acts as a molecular machine to package its own genomic DNA during viral assembly. Self-associating RNA molecules, called pRNA, have an essential role in the function of this machine. This paper reports the characterization of this self-association (which leads to multimerisation of wild-type and truncated variant pRNAs) by analytical ultracentrifugation (including determination of the partial specific volume of the pRNA), together with an investigation into the domains of the molecule important for multimerisation by the use of complementary DNA probes.


2021 ◽  
Vol 30 (5) ◽  
pp. 1056-1063
Author(s):  
Nikolaus M. Loening ◽  
Elisar Barbar

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1706-1706 ◽  
Author(s):  
Whitney Tolpinrud ◽  
Massimiliano Gaetani ◽  
Yelena Maksimova ◽  
Sara Mootien ◽  
Sandra Harper ◽  
...  

Abstract Spectrin, the major structural component of the erythrocyte membrane skeleton, is composed of α and β chains that self-associate to form tetramers. These tetramers provide the structural integrity and flexibility critical for erythrocyte stability and shape. Mutations of α spectrin have been associated with hereditary spherocytosis (HS), hereditary elliptocytosis (HE), and hereditary pyropoikilocytosis (HPP). The large size of the spectrin molecule has complicated its study. We developed a high-throughput capillary nucleotide sequencing strategy to identify mutations of the α-spectrin gene in a group of patients with spectrin-linked HS, HE, or HPP. We identified several variants including 8 nonsense, 4 splice junction, and 4 deletion/insertion mutations.(Mutations in >1 patient are counted only once.) We were interested in the identification of missense mutations, as we hypothesize that defects in α-spectrin occur in regions of structural and functional importance and their identification and characterization will provide important information about spectrin and the membrane skeleton. We identified 16 missense mutations in the region encoding the spectrin self-association site; 6 were proline substitutions and 2 were glycine substitutions, both predicted to disrupt the triple helical configuration of spectrin. Outside the self-association site, excluding 3 common protein polymorphisms, we identified 13 missense mutations; 3 were proline substitutions. To begin to study the functional significance of these mutations, we prepared 15 recombinant spectrin-GST fusion peptides containing residues 1–158 of α spectrin, the self-association contact site, representing wild type (WT) or 14 different missense mutations. After expression and purification, purity was assured by SDS-PAGE, absence of aggregation was verified by analytical HPLC gel filtration, and mass confirmed by MS analyses. Analyses by circular dichroism demonstrated that none of the missense mutations significantly modified secondary structure of the recombinant peptide. WT and mutant peptides exhibited a helical content of ∼65%. Ultracentrifugation studies verified that all peptides were monomeric at 4 and 30°C. Differential scanning calorimetry showed that the WT peptide was very stable with a single reversible 2-state transition with a Tm of 54.6°C. All mutations, except R34W, showed transitions similar to WT. R34W unfolded at a much lower Tm, 49.1°C, with a broader single peak transition. Analysis of spectrin tetramerization between α-spectrin peptides and a recombinant β-spectrin peptide (repeats 16, 17 and COOH-terminus) was performed using an analytical HPLC gel filtration assay. A wide range of binding affinities was observed: WT binding Kd=0.43μM at 23°C; group I: I24S, R28C, R28H, R28L, R28S, R45S, no binding; group II: I24T, R41W, L49F, much weaker binding than WT; group III: V31A, R45T, G46V, binding weaker than WT, and R34W and K48R, binding equal to WT. Quantitative thermodynamic analyses of spectrin tetramerization site formation between α and β spectrin peptides were assessed by isothermal calorimetry. These results were essentially comparable to the gel filtration data except the R34W mutant bound β-spectrin more avidly than WT. The identification and characterization of variants associated with HS, HE and HPP continues to extend our understanding and knowledge of both normal membrane biology and human disease pathogenesis.


2012 ◽  
Vol 101 (1) ◽  
pp. 68-80 ◽  
Author(s):  
Yiming Li ◽  
Walter F. Stafford ◽  
Mark Hesselberg ◽  
David Hayes ◽  
Zhuchun Wu ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e57839 ◽  
Author(s):  
Qianhui Qu ◽  
Jun Chen ◽  
Yizhi Wang ◽  
Wenjun Gui ◽  
Li Wang ◽  
...  

1993 ◽  
Vol 296 (3) ◽  
pp. 671-674 ◽  
Author(s):  
P J Morgan ◽  
P G Varley ◽  
A J Rowe ◽  
P W Andrew ◽  
T J Mitchell

Pneumolysin is a membrane-damaging toxin produced by Streptococcus pneumoniae. In order to understand fully the mode of action of this toxin, it is necessary to have an appreciation of the size, self-association behaviour and solution conformation of pneumolysin. A combination of analytical ultracentrifugation methodologies has shown that pneumolysin lacks self-association behaviour in solution and has provided a weight-average M(r) (M omega) of 52,000 +/- 2000, which was in agreement with that derived from the amino acid sequence. By determining a sedimentation coefficient (S20,w0) of 3.35 +/- 0.10 S, it was possible to suggest a model for the gross solution conformation of pneumolysin monomers. Spectroscopic methods provide additional secondary and tertiary structure information.


Sign in / Sign up

Export Citation Format

Share Document