scholarly journals Generation of the Amyloid-β Peptide N Terminus inSaccharomyces cerevisiaeExpressing Human Alzheimer's Amyloid-β Precursor Protein

1999 ◽  
Vol 274 (48) ◽  
pp. 33843-33846 ◽  
Author(s):  
Jeffrey P. Greenfield ◽  
Huaxi Xu ◽  
Paul Greengard ◽  
Sam Gandy ◽  
Mary Seeger
PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0135741 ◽  
Author(s):  
Isabelle Bourdet ◽  
Aurélie Lampin-Saint-Amaux ◽  
Thomas Preat ◽  
Valérie Goguel

2017 ◽  
Vol 292 (9) ◽  
pp. 3751-3767 ◽  
Author(s):  
Hermeto Gerber ◽  
Fang Wu ◽  
Mitko Dimitrov ◽  
Guillermo M. Garcia Osuna ◽  
Patrick C. Fraering

2005 ◽  
Vol 280 (30) ◽  
pp. 28110-28117 ◽  
Author(s):  
Irfan Y. Tamboli ◽  
Kai Prager ◽  
Esther Barth ◽  
Michael Heneka ◽  
Konrad Sandhoff ◽  
...  

2013 ◽  
Vol 288 (37) ◽  
pp. 26668-26677 ◽  
Author(s):  
Hongjie Wang ◽  
Debleena Dey ◽  
Ivan Carrera ◽  
Dmitriy Minond ◽  
Elisabetta Bianchi ◽  
...  

2006 ◽  
Vol 96 (2) ◽  
pp. 533-540 ◽  
Author(s):  
Masashi Asai ◽  
Chinatsu Hattori ◽  
Nobuhisa Iwata ◽  
Takaomi C. Saido ◽  
Noboru Sasagawa ◽  
...  

2004 ◽  
Vol 383 (2) ◽  
pp. 393-399 ◽  
Author(s):  
Fabian DOCAGNE ◽  
Cecilia GABRIEL ◽  
Nathalie LEBEURRIER ◽  
Sylvain LESNÉ ◽  
Yannick HOMMET ◽  
...  

Abnormal deposition of Aβ (amyloid-β peptide) is one of the hallmarks of AD (Alzheimer's disease). This peptide results from the processing and cleavage of its precursor protein, APP (amyloid-β precursor protein). We have demonstrated previously that TGF-β (transforming growth factor-β), which is overexpressed in AD patients, is capable of enhancing the synthesis of APP by astrocytes by a transcriptional mechanism leading to the accumulation of Aβ. In the present study, we aimed at further characterization of the molecular mechanisms sustaining this TGF-β-dependent transcriptional activity. We report the following findings: first, TGF-β is capable of inducing the transcriptional activity of a reporter gene construct corresponding to the +54/+74 region of the APP promoter, named APPTRE (APP TGF-β-responsive element); secondly, although this effect is mediated by a transduction pathway involving Smad3 (signalling mother against decapentaplegic peptide 3) and Smad4, Smad2 or other Smads failed to induce the activity of APPTRE. We also observed that the APPTRE sequence not only responds to the Smad3 transcription factor, but also the Sp1 (signal protein 1) transcription factor co-operates with Smads to potentiate the TGF-β-dependent activation of APP. TGF-β signalling induces the formation of nuclear complexes composed of Sp1, Smad3 and Smad4. Overall, the present study gives new insights for a better understanding of the fine molecular mechanisms occurring at the transcriptional level and regulating TGF-β-dependent transcription. In the context of AD, our results provide additional evidence for a key role for TGF-β in the regulation of Aβ production.


2014 ◽  
Vol 223 ◽  
pp. 114-122 ◽  
Author(s):  
MiMi P. Macias ◽  
Amanda M. Gonzales ◽  
Ashley L. Siniard ◽  
Aaron W. Walker ◽  
Jason J. Corneveaux ◽  
...  

2011 ◽  
Vol 286 (46) ◽  
pp. 39804-39812 ◽  
Author(s):  
Thomas L. Kukar ◽  
Thomas B. Ladd ◽  
Paul Robertson ◽  
Sean A. Pintchovski ◽  
Brenda Moore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document