scholarly journals Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein.

2012 ◽  
Vol 287 (15) ◽  
pp. 12153-12153
Author(s):  
Wei R. Huang ◽  
Ying C. Wang ◽  
Pei I. Chi ◽  
Lai Wang ◽  
Chi Y. Wang ◽  
...  
2009 ◽  
Vol 90 (12) ◽  
pp. 3002-3009 ◽  
Author(s):  
Wen T. Ji ◽  
Long H. Lee ◽  
Feng L. Lin ◽  
Lai Wang ◽  
Hung J. Liu

Stimulated by energetic stress, AMP-activated protein kinase (AMPK) controls several cellular functions. It was discovered here that infection of Vero cells with avian reovirus (ARV) upregulated AMPK and mitogen-activated protein kinase (MAPK) p38 phosphorylation in a time- and dose-dependent manner. Being an energy status sensor, AMPK is potentially an upstream regulator of MAPK p38. Treatment with 5-amino-4-imidazolecarboxamide ribose (AICAR), a well-known activator of AMPK, induced phosphorylation of MAPK p38. Unlike AICAR, wortmannin or rapamycin did not induce phosphorylation of MAPK p38, suggesting that mTOR inhibition is not a determining factor in MAPK p38 phosphorylation. Inhibition of AMPK by compound C antagonized the effect of AICAR on MAPK p38 in Vero cells. Specific inhibition of AMPK by small interfering RNA or compound C also suppressed ARV-induced phosphorylation of MAPK kinase (MKK) 3/6 and MAPK p38 in Vero and DF-1 cells, thereby providing a link between AMPK signalling and the MAPK p38 pathway. The mechanism of ARV-enhanced phosphorylation of MKK 3/6 and MAPK p38 in cells was not merely due to glucose deprivation, a probable activator of AMPK. In the current study, direct inhibition of MAPK p38 by SB202190 decreased the level of ARV-induced syncytium formation in Vero and DF-1 cells, and decreased the protein levels of ARV σA and σC and the progeny titre of ARV, suggesting that activation of MAPK p38 is beneficial for ARV replication. Taken together, these results suggested that AMPK could facilitate MKK 3/6 and MAPK p38 signalling that is beneficial for ARV replication. Although well studied in energy metabolism, this study provides evidence for the first time that AMPK plays a role in modulating ARV and host-cell interaction.


2005 ◽  
Vol 138 (3) ◽  
pp. 1644-1652 ◽  
Author(s):  
Damien Lieberherr ◽  
Nguyen Phuong Thao ◽  
Ayako Nakashima ◽  
Kenji Umemura ◽  
Tsutomu Kawasaki ◽  
...  

2006 ◽  
Vol 17 (12) ◽  
pp. 5028-5037 ◽  
Author(s):  
Yan Ma ◽  
Takayoshi Kuno ◽  
Ayako Kita ◽  
Yuta Asayama ◽  
Reiko Sugiura

We have previously demonstrated that knockout of the calcineurin gene or inhibition of calcineurin activity by immunosuppressants resulted in hypersensitivity to Cl− in fission yeast. We also demonstrated that knockout of the components of the Pmk1 mitogen-activated protein kinase (MAPK) pathway, such as Pmk1 or Pek1 complemented the hypersensitivity to Cl−. Using this interaction between calcineurin and Pmk1 MAPK, here we developed a genetic screen that aims to identify new regulators of the Pmk1 signaling and isolated vic (viable in the presence of immunosuppressant and chloride ion) mutants. One of the mutants, vic1-1, carried a missense mutation in the cpp1+ gene encoding a β subunit of the protein farnesyltransferase, which caused an amino acid substitution of aspartate 155 of Cpp1 to asparagine (Cpp1D155N). Analysis of the mutant strain revealed that Rho2 is a novel target of Cpp1. Moreover, Cpp1 and Rho2 act upstream of Pck2–Pmk1 MAPK signaling pathway, thereby resulting in the vic phenotype upon their mutations. Interestingly, compared with other substrates of Cpp1, defects of Rho2 function were more phenotypically manifested by the Cpp1D155N mutation. Together, our results demonstrate that Cpp1 is a key component of the Pck2–Pmk1 signaling through the spatial control of the small GTPase Rho2.


2004 ◽  
Vol 72 (3) ◽  
pp. 1512-1518 ◽  
Author(s):  
Chad T. Welsh ◽  
James T. Summersgill ◽  
Richard D. Miller

ABSTRACT Legionella pneumophila, the causative agent of Legionnaires' disease, infects and replicates within a variety of eukaryotic cells. The purpose of the current study was to examine host cell signaling events immediately following uptake and early in the endocytic process (less than 1 h) following the phagocytosis of L. pneumophila. This examination focused on the protein kinase signal pathways to identify any aberrant signal(s) induced by L. pneumophila within its host, as a means to alter the normal endocytic pathway. The mitogen-activated protein kinase cascades are of interest due to their involvement in cellular regulation. The experiments were carried out with monocyte-derived macrophages (MDMs). All three mitogen-activated protein kinase cascades were activated when MDMs were inoculated with either Legionella strain (wild-type strain AA100 or dotA mutant GL10) or an Escherichia coli control. Whereas the avirulent treatments, GL10 and E. coli, exhibited a leveling off or a return to near basal levels of phosphorylation/activity of c-Jun N-terminal kinase by 60 min, the virulent strain AA100 exhibited a significantly increased level of activity through 60 min that was greater than that seen in GL10 (P = 0.025) and E. coli (P = 0.014). A similar trend was seen with p38 phosphorylation. Phosphorylation of mitogen-activated protein/ERK kinase (MEK) was decreased in strain AA100 compared to E. coli. Inhibition of the activity of either the stress-activated protein kinase/c-Jun N-terminal kinase or p38 pathway significantly decreased the ability of legionellae to replicate intracellularly, suggesting the necessity of these two pathways in its intracellular survival and replication.


Virology ◽  
2009 ◽  
Vol 385 (2) ◽  
pp. 323-334 ◽  
Author(s):  
Ping-Yuan Lin ◽  
Jeng-Woei Lee ◽  
Ming-Huei Liao ◽  
Hsue-Yin Hsu ◽  
Shu-Jun Chiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document