scholarly journals Mutational Definition of RNA-binding and Protein-Protein Interaction Domains of Heterogeneous Nuclear RNP C1

2000 ◽  
Vol 276 (10) ◽  
pp. 7681-7688 ◽  
Author(s):  
Lili Wan ◽  
Jeong-Kook Kim ◽  
Victoria W. Pollard ◽  
Gideon Dreyfuss
2021 ◽  
Vol 11 (5) ◽  
pp. 578
Author(s):  
Oge Gozutok ◽  
Benjamin Ryan Helmold ◽  
P. Hande Ozdinler

Hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are rare motor neuron diseases, which affect mostly the upper motor neurons (UMNs) in patients. The UMNs display early vulnerability and progressive degeneration, while other cortical neurons mostly remain functional. Identification of numerous mutations either directly linked or associated with HSP and PLS begins to reveal the genetic component of UMN diseases. Since each of these mutations are identified on genes that code for a protein, and because cellular functions mostly depend on protein-protein interactions, we hypothesized that the mutations detected in patients and the alterations in protein interaction domains would hold the key to unravel the underlying causes of their vulnerability. In an effort to bring a mechanistic insight, we utilized computational analyses to identify interaction partners of proteins and developed the protein-protein interaction landscape with respect to HSP and PLS. Protein-protein interaction domains, upstream regulators and canonical pathways begin to highlight key cellular events. Here we report that proteins involved in maintaining lipid homeostasis and cytoarchitectural dynamics and their interactions are of great importance for UMN health and stability. Their perturbation may result in neuronal vulnerability, and thus maintaining their balance could offer therapeutic interventions.


2000 ◽  
Vol 350 (3) ◽  
pp. 741-746 ◽  
Author(s):  
Julian GRUSOVIN ◽  
Violet STOICHEVSKA ◽  
Keith H. GOUGH ◽  
Katrina NUNAN ◽  
Colin W. WARD ◽  
...  

munc18c is a critical protein involved in trafficking events associated with syntaxin 4 and which also mediates inhibitory effects on vesicle docking and/or fusion. To investigate the domains of munc18c responsible for its interaction with syntaxin 4, fragments of munc18c were generated and their interaction with syntaxin 4 examined in vivo by the yeast two-hybrid assay. In vitro protein–protein interaction studies were then used to confirm that the interaction between the proteins was direct. Full-length munc18c1–592, munc18c1–139 and munc18c1–225, but not munc18c226–592, munc18c1–100, munc18c43–139 or munc18c66–139, interacted with the cytoplasmic portion of syntaxin 4, Stx42–273, as assessed by yeast two-hybrid assay of growth on nutritionally deficient media and by β-galactosidase reporter induction. The N-terminal predicted helix-a-helix-b-helix-c region of syntaxin 4, Stx429–157, failed to interact with full-length munc18c1–592, indicating that a larger portion of syntaxin 4 is necessary for the interaction. The yeast two-hybrid results were confirmed by protein–protein interaction studies between Stx42–273 and glutathione S-transferase fusion proteins of munc18c. Full-length munc18c1–592, munc18c1–139 and munc18c1–225 interacted with Stx42–273 whereas munc18c1–100 did not, consistent with the yeast two-hybrid data. These data thus identify a region of munc18c between residues 1 and 139 as a minimal domain for its interaction with syntaxin 4.


2008 ◽  
Vol 18 (9) ◽  
pp. 1500-1508 ◽  
Author(s):  
K. Xia ◽  
Z. Fu ◽  
L. Hou ◽  
J.-D. J. Han

2005 ◽  
Vol 44 (19) ◽  
pp. 2852-2869 ◽  
Author(s):  
Linda J. Ball ◽  
Ronald Kühne ◽  
Jens Schneider-Mergener ◽  
Hartmut Oschkinat

2012 ◽  
Vol 40 (5) ◽  
pp. 1074-1079 ◽  
Author(s):  
Yulan Xiong ◽  
Valina L. Dawson ◽  
Ted M. Dawson

Mutations in the LRRK2 (leucine-rich repeat kinase 2) gene are the most frequent genetic cause of PD (Parkinson's disease), and these mutations play important roles in sporadic PD. The LRRK2 protein contains GTPase and kinase domains and several protein–protein interaction domains. The kinase and GTPase activity of LRRK2 seem to be important in regulating LRRK2-dependent cellular signalling pathways. LRRK2's GTPase and kinase domains may reciprocally regulate each other to direct LRRK2's ultimate function. Although most LRRK2 investigations are centred on LRRK2's kinase activity, the present review focuses on the function of LRRK2's GTPase activity in LRRK2 physiology and pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document