scholarly journals Polyunsaturated Fatty Acids Suppress Sterol Regulatory Element-binding Protein 1c Promoter Activity by Inhibition of Liver X Receptor (LXR) Binding to LXR Response Elements

2001 ◽  
Vol 277 (3) ◽  
pp. 1705-1711 ◽  
Author(s):  
Tomohiro Yoshikawa ◽  
Hitoshi Shimano ◽  
Naoya Yahagi ◽  
Tomohiro Ide ◽  
Michiyo Amemiya-Kudo ◽  
...  
2002 ◽  
Vol 61 (3) ◽  
pp. 371-374 ◽  
Author(s):  
Sander Kersten

Dietary fatty acids have numerous effects on cellular function, many of which are achieved by altering the expression of genes. The present paper reviews recent data on the mechanisms by which fatty acids influence DNA transcription, and focus specifically on the importance of three transcription factors: peroxisome proliferator-activated receptor α; liver X receptor α; sterol regulatory element-binding protein 1c. These data indicate that fatty acids induce or inhibit the mRNA expression of a variety of different genes by acting both as agonists and as antagonists for nuclear hormone receptors.


2007 ◽  
Vol 282 (29) ◽  
pp. 21090-21099 ◽  
Author(s):  
Norimasa Tamehiro ◽  
Yukari Shigemoto-Mogami ◽  
Tomoshi Kakeya ◽  
Kei-ichiro Okuhira ◽  
Kazuhiro Suzuki ◽  
...  

2006 ◽  
Vol 399 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Franck Hansmannel ◽  
Sylvie Mordier ◽  
Patrick B. Iynedjian

The transcription activator SREBP-1c (sterol-regulatory-element-binding protein-1c) is induced by insulin in the liver and is considered a master regulator of lipogenic genes such as FASN (fatty acid synthase). The question of whether SREBP-1c is also a mediator of insulin action on the regulatory enzyme of glucose metabolism GCK (glucokinase) is controversial. In the present paper, we induced SREBP-1c to various levels with insulin or the liver X receptor ligand T0901317 in primary hepatocytes and asked if these levels correlated with those of GCK or FASN mRNA expression, using the latter as positive control. Insulin and T0901317 triggered the accumulation of precursor and processed forms of SREBP-1c to similar levels and with comparable kinetics, and both effectors together caused synergistic increases in SREBP-1c protein levels. These effects were accompanied by commensurate elevation of FASN mRNA, notably by a synergistic response to both effectors. By contrast, GCK mRNA was unresponsive to T0901317 and was induced only by insulin. Treatment of hepatocytes with insulin and/or T0901317 resulted in the recruitment of SREBP-1c to the FASN promoter as shown by chromatin immunoprecipitation, whereas SREBP-1c did not bind to the GCK promoter. Lastly, we observed that the glycogen synthase kinase-3 inhibitor SB216763 produced a small increase in SREBP-1c protein level, which was further augmented in the presence of T0901317. The level of FASN mRNA varied in parallel with SREBP-1c, while GCK mRNA was unaffected. Collectively, these results showed that increases in SREBP-1c were neither necessary nor sufficient for GCK induction in hepatocytes, while at the same time they underscored the role of SREBP-1c as a key regulator of FASN.


2007 ◽  
Vol 292 (1) ◽  
pp. G369-G376 ◽  
Author(s):  
Waddah A. Alrefai ◽  
Fadi Annaba ◽  
Zaheer Sarwar ◽  
Alka Dwivedi ◽  
Seema Saksena ◽  
...  

Niemann-Pick C1-like 1 (NPC1L1) is an essential intestinal component of cholesterol absorption. However, little is known about the molecular regulation of intestinal NPC1L1 expression and promoter activity. We demonstrated that human NPC1L1 mRNA expression was significantly decreased by 25-hydroxycholesterol but increased in response to cellular cholesterol depletion achieved by incubation with Mevinolin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase) in human intestinal Caco-2 cells. We also showed that a −1741/+56 fragment of the NPC1L1 gene demonstrated high promoter activity in Caco-2 cells that was reduced by 25-hydroxycholesterol and stimulated by cholesterol depletion. Interestingly, we showed that the NPC1L1 promoter is remarkably transactivated by the overexpression of sterol regulatory element (SRE) binding protein (SREBP)-2, suggesting its involvement in the sterol-induced alteration in NPC1L1 promoter activity. Finally, we identified two putative SREs in the human NPC1L1 promoter and established their essential roles in mediating the effects of cholesterol on promoter activity. Our study demonstrated the modulation of human NPC1L1 expression and promoter activity by cholesterol in a SREBP-2-dependent mechanism.


2007 ◽  
Vol 282 (16) ◽  
pp. 11687-11695 ◽  
Author(s):  
Takashi Yamamoto ◽  
Hitoshi Shimano ◽  
Noriyuki Inoue ◽  
Yoshimi Nakagawa ◽  
Takashi Matsuzaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document