scholarly journals DNA Binding and Gene Activation Properties of the Nmp4 Nuclear Matrix Transcription Factors

2002 ◽  
Vol 277 (18) ◽  
pp. 16153-16159 ◽  
Author(s):  
Kitti Torrungruang ◽  
Marta Alvarez ◽  
Rita Shah ◽  
Jude E. Onyia ◽  
Simon J. Rhodes ◽  
...  
2000 ◽  
Vol 113 (12) ◽  
pp. 2221-2231 ◽  
Author(s):  
A. Javed ◽  
B. Guo ◽  
S. Hiebert ◽  
J.Y. Choi ◽  
J. Green ◽  
...  

The Runt related transcription factors RUNX (AML/CBF(alpha)/PEBP2(alpha)) are key regulators of hematopoiesis and osteogenesis. Using co-transfection experiments with four natural promoters, including those of the osteocalcin (OC), multi drug resistance (MDR), Rous Sarcoma Virus long terminal repeat (LTR), and bone sialoprotein (BSP) genes, we show that each of these promoters responds differently to the forced expression of RUNX proteins. However, the three RUNX subtypes (i.e. AML1, AML2, and AML3) regulate each promoter in a similar manner. Although the OC promoter is activated in a C terminus dependent manner, the MDR, LTR and BSP promoters are repressed by three distinct mechanisms, either independent of or involving the AML C terminus, or requiring only the conserved C-terminal pentapeptide VWRPY. Using yeast two hybrid assays we find that the C terminus of AML1 interacts with a Groucho/TLE/R-esp repressor protein. Co-expression assays reveal that TLE proteins repress AML dependent activation of OC gene transcription. Western and northern blot analyses suggest that TLE expression is regulated reciprocally with the levels of OC gene expression during osteoblast differentiation. Digital immunofluorescence microscopy results show that TLE1 and TLE2 are both associated with the nuclear matrix, and that a significant subset of each colocalizes with AML transcription factors. This co-localization of TLE and AML proteins is lost upon removing the C terminus of AML family members. Our findings indicate that suppression of AML-dependent gene activation by TLE proteins involves functional interactions with the C terminus of AML at the nuclear matrix in situ. Our data are consistent with the concept that the C termini of AML proteins support activation or repression of cell-type specific genes depending on the regulatory organization of the target promoter and subnuclear localization.


1998 ◽  
Vol 18 (3) ◽  
pp. 1266-1274 ◽  
Author(s):  
Fuminori Hirano ◽  
Hirotoshi Tanaka ◽  
Yoshiko Hirano ◽  
Masaki Hiramoto ◽  
Hiroshi Handa ◽  
...  

ABSTRACT Gene activation by NF-κB/Rel transcription factors is modulated by synergistic or antagonistic interactions with other promoter-bound transcription factors. For example, Sp1 sites are often found in NF-κB-regulated genes, and Sp1 can activate certain promoters in synergism with NF-κB through nonoverlapping binding sites. Here we report that Sp1 acts directly through a subset of NF-κB binding sites. The DNA binding affinity of Sp1 to these NF-κB sites, as determined by their relative dissociation constants and their relative efficiencies as competitor DNAs or as binding site probes, is in the order of that for a consensus GC box Sp1 site. In contrast, NF-κB does not bind to a GC box Sp1 site. Sp1 can activate transcription through immunoglobulin kappa-chain enhancer or P-selectin promoter NF-κB sites. p50 homodimers replace Sp1 from the P-selectin promoter by binding site competition and thereby either inhibit basal Sp1-driven expression or, in concert with Bcl-3, stimulate expression. The interaction of Sp1 with NF-κB sites thus provides a means to keep an elevated basal expression of NF-κB-dependent genes in the absence of activated nuclear NF-κB/Rel.


2012 ◽  
Vol 34 (8) ◽  
pp. 950-968
Author(s):  
Guang-Ming GU ◽  
Jin-Ke WANG

2014 ◽  
Vol 289 (31) ◽  
pp. 21605-21616 ◽  
Author(s):  
Shuo Wang ◽  
Miles H. Linde ◽  
Manoj Munde ◽  
Victor D. Carvalho ◽  
W. David Wilson ◽  
...  

1993 ◽  
Vol 13 (7) ◽  
pp. 3999-4010 ◽  
Author(s):  
M Merika ◽  
S H Orkin

GATA-binding proteins constitute a family of transcription factors that recognize a target site conforming to the consensus WGATAR (W = A or T and R = A or G). Here we have used the method of polymerase chain reaction-mediated random site selection to assess in an unbiased manner the DNA-binding specificity of GATA proteins. Contrary to our expectations, we show that GATA proteins bind a variety of motifs that deviate from the previously assigned consensus. Many of the nonconsensus sequences bind protein with high affinity, equivalent to that of conventional GATA motifs. By using the selected sequences as probes in the electrophoretic mobility shift assay, we demonstrate overlapping, but distinct, sequence preferences for GATA family members, specified by their respective DNA-binding domains. Furthermore, we provide additional evidence for interaction of amino and carboxy fingers of GATA-1 in defining its binding site. By performing cotransfection experiments, we also show that transactivation parallels DNA binding. A chimeric protein containing the finger domain of areA and the activation domains of GATA-1 is capable of activating transcription in mammalian cells through GATA motifs. Our findings suggest a mechanism by which GATA proteins might selectively regulate gene expression in cells in which they are coexpressed.


2008 ◽  
Vol 68 (1-2) ◽  
pp. 81-92 ◽  
Author(s):  
Ingo Ciolkowski ◽  
Dierk Wanke ◽  
Rainer P. Birkenbihl ◽  
Imre E. Somssich

2005 ◽  
Vol 289 (5) ◽  
pp. G798-G805 ◽  
Author(s):  
Gernot Zollner ◽  
Martin Wagner ◽  
Peter Fickert ◽  
Andreas Geier ◽  
Andrea Fuchsbichler ◽  
...  

Expression of the main hepatic bile acid uptake system, the Na+-taurocholate cotransporter (Ntcp), is downregulated during cholestasis. Bile acid-induced, farnesoid X receptor (FXR)-mediated induction of the nuclear repressor short heterodimer partner (SHP) has been proposed as a key mechanism reducing Ntcp expression. However, the role of FXR and SHP or other nuclear receptors and hepatocyte-enriched transcription factors in mediating Ntcp repression in obstructive cholestasis is unclear. FXR knockout (FXR−/−) and wild-type (FXR+/+) mice were subjected to common bile duct ligation (CBDL). Cholic acid (CA)-fed and LPS-treated FXR−/− and FXR+/+ mice were studied for comparison. mRNA levels of Ntcp and SHP and nuclear protein levels of hepatocyte nuclear factor (HNF)-1α, HNF-3β, HNF-4α, retinoid X receptor (RXR)-α, and retinoic acid receptor (RAR)-α and their DNA binding were assessed. Hepatic cytokine mRNA levels were also measured. CBDL and CA led to Ntcp repression in FXR+/+, but not FXR−/−, mice, whereas LPS reduced Ntcp expression in both genotypes. CBDL and LPS but not CA induced cytokine expression and reduced levels of HNF-1α, HNF-3β, HNF-4α, RXRα, and RARα to similar extents in FXR+/+ and FXR−/−. DNA binding of these transactivators was unaffected by CA in FXR+/+ mice but was markedly reduced in FXR−/− mice. In conclusion, Ntcp repression by CBDL and CA is mediated by accumulating bile acids via FXR and does not depend on cytokines, whereas Ntcp repression by LPS is independent of FXR. Reduced levels of HNF-1α, RXRα, and RARα in CBDL FXR−/− mice and reduced DNA binding in CA-fed FXR−/− mice, despite unchanged Ntcp levels, indicate that these factors may have a minor role in regulation of mouse Ntcp during cholestasis.


Sign in / Sign up

Export Citation Format

Share Document