scholarly journals Mammalian Tropomodulins Nucleate Actin Polymerization via Their Actin Monomer Binding and Filament Pointed End-capping Activities

2010 ◽  
Vol 285 (43) ◽  
pp. 33265-33280 ◽  
Author(s):  
Sawako Yamashiro ◽  
Kaye D. Speicher ◽  
David W. Speicher ◽  
Velia M. Fowler
2010 ◽  
Vol 21 (19) ◽  
pp. 3352-3361 ◽  
Author(s):  
Aneta Skwarek-Maruszewska ◽  
Malgorzata Boczkowska ◽  
Allison L. Zajac ◽  
Elena Kremneva ◽  
Tatyana Svitkina ◽  
...  

Leiomodin (Lmod) is a muscle-specific F-actin–nucleating protein that is related to the F-actin pointed-end–capping protein tropomodulin (Tmod). However, Lmod contains a unique ∼150-residue C-terminal extension that is required for its strong nucleating activity. Overexpression or depletion of Lmod compromises sarcomere organization, but the mechanism by which Lmod contributes to myofibril assembly is not well understood. We show that Tmod and Lmod localize through fundamentally different mechanisms to the pointed ends of two distinct subsets of actin filaments in myofibrils. Tmod localizes to two narrow bands immediately adjacent to M-lines, whereas Lmod displays dynamic localization to two broader bands, which are generally more separated from M-lines. Lmod's localization and F-actin nucleation activity are enhanced by interaction with tropomyosin. Unlike Tmod, the myofibril localization of Lmod depends on sustained muscle contraction and actin polymerization. We further show that Lmod expression correlates with the maturation of myofibrils in cultured cardiomyocytes and that it associates with sarcomeres only in differentiated myofibrils. Collectively, the data suggest that Lmod contributes to the final organization and maintenance of sarcomere architecture by promoting tropomyosin-dependent actin filament nucleation.


1992 ◽  
Vol 116 (5) ◽  
pp. 1123-1134 ◽  
Author(s):  
M L Cano ◽  
L Cassimeris ◽  
M Fechheimer ◽  
S H Zigmond

While actin polymerization and depolymerization are both essential for cell movement, few studies have focused on actin depolymerization. In vivo, depolymerization can occur exceedingly rapidly and in a spatially defined manner: the F-actin in the lamellipodia depolymerizes in 30 s after chemoattractant removal (Cassimeris, L., H. McNeill, and S. H. Zigmond. 1990. J. Cell Biol. 110:1067-1075). To begin to understand the regulation of F-actin depolymerization, we have examined F-actin depolymerization in lysates of polymorphonuclear leukocytes (PMNs). Surprisingly, much of the cell F-actin, measured with a TRITC-phalloidin-binding assay, was stable after lysis in a physiological salt buffer (0.15 M KCl): approximately 50% of the F-actin did not depolymerize even after 18 h. This stable F-actin included lamellar F-actin which could still be visualized one hour after lysis by staining with TRITC-phalloidin and by EM. We investigated the basis for this stability. In lysates with cell concentrations greater than 10(7) cells/ml, sufficient globular actin (G-actin) was present to result in a net increase in F-actin. However, the F-actin stability was not solely because of the presence of free G-actin since addition of DNase I to the lysate did not increase the F-actin loss. Nor did it appear to be because of barbed end capping factors since cell lysates provided sites for barbed end polymerization of exogenous added actin. The stable F-actin existed in a macromolecular complex that pelleted at low gravitational forces. Increasing the salt concentration of the lysis buffer decreased the amount of F-actin that pelleted at low gravitational forces and increased the amount of F-actin that depolymerized. Various actin-binding and cross-linking proteins such as tropomyosin, alpha-actinin, and actin-binding protein pelleted with the stable F-actin. In addition, we found that alpha-actinin, a filament cross-linking protein, inhibited the rate of pyrenyl F-actin depolymerization. These results suggested that actin cross-linking proteins may contribute to the stability of cellular actin after lysis. The activity of crosslinkers may be regulated in vivo to allow rapid turnover of lamellipodia F-actin.


1996 ◽  
Vol 134 (2) ◽  
pp. 389-399 ◽  
Author(s):  
K Barkalow ◽  
W Witke ◽  
D J Kwiatkowski ◽  
J H Hartwig

Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F-actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.


2014 ◽  
Author(s):  
Alvaro H. Crevenna ◽  
Marcelino Arciniega ◽  
Aurelie Dupont ◽  
Kaja Kowalska ◽  
Oliver Lange ◽  
...  

Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of the filament to polymerize and depolymerize at its ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. Here, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by proteins that bind to the lateral filament surface. We also show that the less dynamic end, called the pointed-end, has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of filament flexibility and Brownian dynamics simulations suggest that the observed kinetic diversity arises from structural alteration. Tuning filament kinetics by exploiting the natural malleability of the actin filament structure may be a ubiquitous mechanism to generate the rich variety of observed cellular actin dynamics.


1998 ◽  
Vol 111 (2) ◽  
pp. 199-211 ◽  
Author(s):  
A.Y. Chan ◽  
S. Raft ◽  
M. Bailly ◽  
J.B. Wyckoff ◽  
J.E. Segall ◽  
...  

Stimulation of metastatic MTLn3 cells with EGF causes the rapid extension of lamellipods, which contain a zone of F-actin at the leading edge. In order to establish the mechanism for accumulation of F-actin at the leading edge and its relationship to lamellipod extension in response to EGF, we have studied the kinetics and location of EGF-induced actin nucleation activity in MTLn3 cells and characterized the actin dynamics at the leading edge by measuring the changes at the pointed and barbed ends of actin filaments upon EGF stimulation of MTLn3 cells. The major result of this study is that stimulation of MTLn3 cells with EGF causes a transient increase in actin nucleation activity resulting from the appearance of free barbed ends very close to the leading edge of extending lamellipods. In addition, cytochalasin D causes a significant decrease in the total F-actin content in EGF-stimulated cells, indicating that both actin polymerization and depolymerization are stimulated by EGF. Pointed end incorporation of rhodamine-labeled actin by the EGF stimulated cells is 2.12+/−0.47 times higher than that of control cells. Since EGF stimulation causes an increase in both barbed and pointed end incorporation of rhodamine-labeled actin in the same location, the EGF-stimulated nucleation sites are more likely due either to severing of pre-existing filaments or de novo nucleation of filaments at the leading edge thereby creating new barbed and pointed ends. The timing and location of EGF-induced actin nucleation activity in MTLn3 cells can account for the observed accumulation of F-actin at the leading edge and demonstrate that this F-actin rich zone is the primary actin polymerization zone after stimulation.


2017 ◽  
Vol 216 (8) ◽  
pp. 2255-2257 ◽  
Author(s):  
Katalin Schlett

Synaptic activity reshapes the morphology of dendritic spines via regulating F-actin arborization. In this issue, Lei et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201612042) reports a novel, G-actin–dependent regulation of actin polymerization within spine heads. They show that actin monomer levels are elevated in spines upon activity, with G-actin immobilized by the local enrichment of phosphatidylinositol (3,4,5)-triphosphate (PIP3) within the spine plasma membrane.


1994 ◽  
Vol 127 (6) ◽  
pp. 1627-1635 ◽  
Author(s):  
A Weber ◽  
C R Pennise ◽  
G G Babcock ◽  
V M Fowler

Many proteins have been shown to cap the fast growing (barbed) ends of actin filaments, but none have been shown to block elongation and depolymerization at the slow growing (pointed) filament ends. Tropomodulin is a tropomyosin-binding protein originally isolated from red blood cells that has been localized by immunofluorescence staining to a site at or near the pointed ends of skeletal muscle thin filaments (Fowler, V. M., M. A., Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120: 411-420). Our experiments demonstrate that tropomodulin in conjunction with tropomyosin is a pointed end capping protein: it completely blocks both elongation and depolymerization at the pointed ends of tropomyosin-containing actin filaments in concentrations stoichiometric to the concentration of filament ends (Kd < or = 1 nM). In the absence of tropomyosin, tropomodulin acts as a "leaky" cap, partially inhibiting elongation and depolymerization at the pointed filament ends (Kd for inhibition of elongation = 0.1-0.4 microM). Thus, tropomodulin can bind directly to actin at the pointed filament end. Tropomodulin also doubles the critical concentration at the pointed ends of pure actin filaments without affecting either the rate of extent of polymerization at the barbed filament ends, indicating that tropomodulin does not sequester actin monomers. Our experiments provide direct biochemical evidence that tropomodulin binds to both the terminal tropomyosin and actin molecules at the pointed filament end, and is the long sought-after pointed end capping protein. We propose that tropomodulin plays a role in maintaining the narrow length distributions of the stable, tropomyosin-containing actin filaments in striated muscle and in red blood cells.


2010 ◽  
Vol 135 (5) ◽  
pp. i4-i4
Author(s):  
David S. Gokhin ◽  
Raymond A. Lewis ◽  
Caroline R. McKeown ◽  
Roberta B. Nowak ◽  
Nancy E. Kim ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tommi Kotila ◽  
Hugo Wioland ◽  
Giray Enkavi ◽  
Konstantin Kogan ◽  
Ilpo Vattulainen ◽  
...  

AbstractThe ability of cells to generate forces through actin filament turnover was an early adaptation in evolution. While much is known about how actin filaments grow, mechanisms of their disassembly are incompletely understood. The best-characterized actin disassembly factors are the cofilin family proteins, which increase cytoskeletal dynamics by severing actin filaments. However, the mechanism by which severed actin filaments are recycled back to monomeric form has remained enigmatic. We report that cyclase-associated-protein (CAP) works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold. Structural work uncovers the molecular mechanism by which CAP interacts with actin filament pointed end to destabilize the interface between terminal actin subunits, and subsequently recycles the newly-depolymerized actin monomer for the next round of filament assembly. These findings establish CAP as a molecular machine promoting rapid actin filament depolymerization and monomer recycling, and explain why CAP is critical for actin-dependent processes in all eukaryotes.


Nature ◽  
1995 ◽  
Vol 377 (6544) ◽  
pp. 83-86 ◽  
Author(s):  
Carol C. Gregorio ◽  
Annemarie Weber ◽  
Meredith Bondad ◽  
Cynthia R. Pennise ◽  
Velia M. Fowler

Sign in / Sign up

Export Citation Format

Share Document