scholarly journals Phosphorylation of a PDZ Domain Extension Modulates Binding Affinity and Interdomain Interactions in Postsynaptic Density-95 (PSD-95) Protein, a Membrane-associated Guanylate Kinase (MAGUK)

2011 ◽  
Vol 286 (48) ◽  
pp. 41776-41785 ◽  
Author(s):  
Jun Zhang ◽  
Chad M. Petit ◽  
David S. King ◽  
Andrew L. Lee
2019 ◽  
Vol 75 (4) ◽  
pp. 381-391 ◽  
Author(s):  
Ana Camara-Artigas ◽  
Javier Murciano-Calles ◽  
Jose C. Martínez

PDZ domains are protein–protein recognition modules that interact with other proteins through short sequences at the carboxyl terminus. These domains are structurally characterized by a conserved fold composed of six β-strands and two α-helices. The third PDZ domain of the neuronal postsynaptic density protein 95 has an additional α-helix (α3), the role of which is not well known. In previous structures, a succinimide was identified in the β2–β3 loop instead of Asp332. The presence of this modified residue results in conformational changes in α3. In this work, crystallographic structures of the following have been solved: a truncated form of the third PDZ domain of the neuronal postsynaptic density protein 95 from which α3 has been removed, D332P and D332G variants of the protein, and a new crystal form of this domain showing the binding of Asp332 to the carboxylate-binding site of a symmetry-related molecule. Crystals of the wild type and variants were obtained in different space groups, which reflects the conformational plasticity of the domain. Indeed, the overall analysis of these structures suggests that the conformation of the β2–β3 loop is correlated with the fold acquired by α3. The alternate conformation of the β2–β3 loop affects the electrostatics of the carboxylate-binding site and might modulate the binding of different PDZ-binding motifs.


2008 ◽  
Vol 870 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Georgeen Gaza-Bulseco ◽  
Sagar Faldu ◽  
Karen Hurkmans ◽  
Chris Chumsae ◽  
Hongcheng Liu

1998 ◽  
Vol 273 (41) ◽  
pp. 26269-26272 ◽  
Author(s):  
Maki Deguchi ◽  
Yutaka Hata ◽  
Masakazu Takeuchi ◽  
Nobuyuki Ide ◽  
Kazuyo Hirao ◽  
...  

2015 ◽  
Vol 71 (3) ◽  
pp. 555-564 ◽  
Author(s):  
Marina E. Ivanova ◽  
Georgina C. Fletcher ◽  
Nicola O'Reilly ◽  
Andrew G. Purkiss ◽  
Barry J. Thompson ◽  
...  

Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required forDrosophilacell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction.


2002 ◽  
Vol 157 (1) ◽  
pp. 161-172 ◽  
Author(s):  
Michael H. Roh ◽  
Olga Makarova ◽  
Chia-Jen Liu ◽  
Shin ◽  
Seonok Lee ◽  
...  

Membrane-associated guanylate kinase (Maguk) proteins are scaffold proteins that contain PSD-95–Discs Large–zona occludens-1 (PDZ), Src homology 3, and guanylate kinase domains. A subset of Maguk proteins, such as mLin-2 and protein associated with Lin-7 (Pals)1, also contain two L27 domains: an L27C domain that binds mLin-7 and an L27N domain of unknown function. Here, we demonstrate that the L27N domain targets Pals1 to tight junctions by binding to a PDZ domain protein, Pals1-associated tight junction (PATJ) protein, via a unique Maguk recruitment domain. PATJ is a homologue of Drosophila Discs Lost, a protein that is crucial for epithelial polarity and that exists in a complex with the apical polarity determinant, Crumbs. PATJ and a human Crumbs homologue, CRB1, colocalize with Pals1 to tight junctions, and CRB1 interacts with PATJ albeit indirectly via binding the Pals1 PDZ domain. In agreement, we find that a Drosophila homologue of Pals1 participates in identical interactions with Drosophila Crumbs and Discs Lost. This Drosophila Pals1 homologue has been demonstrated recently to represent Stardust, a crucial polarity gene in Drosophila. Thus, our data identifies a new multiprotein complex that appears to be evolutionarily conserved and likely plays an important role in protein targeting and cell polarity.


Sign in / Sign up

Export Citation Format

Share Document