scholarly journals Lipopolysaccharide-mediated Reactive Oxygen Species and Signal Transduction in the Regulation of Interleukin-1 Gene Expression

2002 ◽  
Vol 277 (25) ◽  
pp. 22131-22139 ◽  
Author(s):  
Hsien-Yeh Hsu ◽  
Meng-Hsuan Wen
2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Soumen Bhattacharjee

Reactive oxygen species (ROS) are astonishingly versatile molecular species and radicals that are poised at the core of a sophisticated network of signaling pathways of plants and act as core regulator of cell physiology and cellular responses to environment. ROS are continuously generated in plants as an inevitable consequence of redox cascades of aerobic metabolism. In one hand, plants are surfeited with the mechanism to combat reactive oxygen species, in other circumstances, plants appear to purposefully generate (oxidative burst) and exploit ROS or ROS-induced secondary breakdown products for the regulation of almost every aspect of plant biology, from perception of environmental cues to gene expression. The molecular language associated with ROS-mediated signal transduction, leading to modulation in gene expression to be one of the specific early stress response in the acclamatory performance of the plant. They may even act as “second messenger” modulating the activities of specific proteins or expression of genes by changing redox balance of the cell. The network of redox signals orchestrates metabolism for regulating energy production to utilization, interfering with primary signaling agents (hormones) to respond to changing environmental cues at every stage of plant development. The oxidative lipid peroxidation products and the resulting generated products thereof (associated with stress and senescence) also represent “biological signals,” which do not require preceding activation of genes. Unlike ROS-induced expression of genes, these lipid peroxidation products produce nonspecific response to a large variety of environmental stresses. The present review explores the specific and nonspecific signaling language of reactive oxygen species in plant acclamatory defense processes, controlled cell death, and development. Special emphasis is given to ROS and redox-regulated gene expression and the role of redox-sensitive proteins in signal transduction event. It also describes the emerging complexity of apparently contradictory roles that ROS play in cellular physiology to ascertain their position in the life of the plant.


2021 ◽  
Author(s):  
Jee Hyung Sohn ◽  
Yul Ji ◽  
Chang-Yun Cho ◽  
Hahn Nahmgoong ◽  
Sangsoo Lim ◽  
...  

Reactive oxygen species (ROS) are associated with various roles of brown adipocytes. Glucose-6-phosphate dehydrogenase (G6PD) controls cellular redox potentials by producing NADPH. Although G6PD upregulates cellular ROS levels in white adipocytes, the roles of G6PD in brown adipocytes remain elusive. Here, we found that G6PD defect in brown adipocytes impaired thermogenic function through excessive cytosolic ROS accumulation. Upon cold exposure, G6PD-deficient mutant (G6PD<sup>mut</sup>) mice exhibited cold intolerance and downregulated thermogenic gene expression in brown adipose tissue (BAT). In addition, G6PD-deficient brown adipocytes had increased cytosolic ROS levels, leading to ERK activation. In BAT of G6PD<sup>mut</sup> mice, administration of antioxidant restored the thermogenic activity by potentiating thermogenic gene expression and relieving ERK activation. Consistently, body temperature and thermogenic execution were rescued by ERK inhibition in cold-exposed G6PD<sup>mut</sup> mice. Taken together, these data suggest that G6PD in brown adipocytes would protect against cytosolic oxidative stress, leading to cold-induced thermogenesis.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 963 ◽  
Author(s):  
Andrea Tóth ◽  
Enikő Balogh ◽  
Viktória Jeney

Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.


2020 ◽  
Vol 21 (16) ◽  
pp. 5899 ◽  
Author(s):  
Adam Augustyniak ◽  
Izabela Pawłowicz ◽  
Katarzyna Lechowicz ◽  
Karolina Izbiańska-Jankowska ◽  
Magdalena Arasimowicz-Jelonek ◽  
...  

Though winter-hardiness is a complex trait, freezing tolerance was proved to be its main component. Species from temperate regions acquire tolerance to freezing in a process of cold acclimation, which is associated with the exposure of plants to low but non-freezing temperatures. However, mechanisms of cold acclimation in Lolium-Festuca grasses, important for forage production in Europe, have not been fully recognized. Thus, two L. multiflorum/F. arundinacea introgression forms with distinct freezing tolerance were used herein as models in the comprehensive research to dissect these mechanisms in that group of plants. The work was focused on: (i) analysis of cellular membranes’ integrity; (ii) analysis of plant photosynthetic capacity (chlorophyll fluorescence; gas exchange; gene expression, protein accumulation, and activity of selected enzymes of the Calvin cycle); (iii) analysis of plant antioxidant capacity (reactive oxygen species generation; gene expression, protein accumulation, and activity of selected enzymes); and (iv) analysis of Cor14b accumulation, under cold acclimation. The more freezing tolerant introgression form revealed a higher integrity of membranes, an ability to cold acclimate its photosynthetic apparatus and higher water use efficiency after three weeks of cold acclimation, as well as a higher capacity of the antioxidant system and a lower content of reactive oxygen species in low temperature.


2019 ◽  
Vol 20 (13) ◽  
pp. 3217 ◽  
Author(s):  
Attig ◽  
Spitzbarth ◽  
Kalkuhl ◽  
Deschl ◽  
Puff ◽  
...  

(1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler’s murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to characteristic metabolites such as oxidized lipids, malondialdehyde, and 8-hydroxyguanosine. The hypothesis of this study is that ROS are key effector molecules in the pathogenesis of myelin membrane breakdown in CDV-DL and TMEV-DL. (2) Methods: ROS metabolites and antioxidative enzymes were assessed using immunofluorescence in cerebellar lesions of naturally CDV-infected dogs and spinal cord tissue of TMEV-infected mice. The transcription of selected genes involved in ROS generation and detoxification was analyzed using gene-expression microarrays in CDV-DL and TMEV-DL. (3) Results: Immunofluorescence revealed increased amounts of oxidized lipids, malondialdehyde, and 8-hydroxyguanosine in CDV-DL while TMEV-infected mice did not reveal marked changes. In contrast, microarray-analysis showed an upregulated gene expression associated with ROS generation in both diseases. (4) Conclusion: In summary, the present study demonstrates a similar upregulation of gene-expression of ROS generation in CDV-DL and TMEV-DL. However, immunofluorescence revealed increased accumulation of ROS metabolites exclusively in CDV-DL. These results suggest differences in the pathogenesis of demyelination in these two animal models.


Sign in / Sign up

Export Citation Format

Share Document