scholarly journals Cross-linking Evidence for Multiple Interactions of the PsbP and PsbQ Proteins in a Higher Plant Photosystem II Supercomplex

2014 ◽  
Vol 289 (29) ◽  
pp. 20150-20157 ◽  
Author(s):  
Kunio Ido ◽  
Jon Nield ◽  
Yoichiro Fukao ◽  
Taishi Nishimura ◽  
Fumihiko Sato ◽  
...  

2014 ◽  
Vol 111 (45) ◽  
pp. 16178-16183 ◽  
Author(s):  
Manjula P. Mummadisetti ◽  
Laurie K. Frankel ◽  
Henry D. Bellamy ◽  
Larry Sallans ◽  
Jost S. Goettert ◽  
...  


Biochemistry ◽  
2016 ◽  
Vol 55 (23) ◽  
pp. 3204-3213 ◽  
Author(s):  
Manjula P. Mummadisetti ◽  
Laurie K. Frankel ◽  
Henry D. Bellamy ◽  
Larry Sallans ◽  
Jost S. Goettert ◽  
...  




2017 ◽  
Vol 114 (9) ◽  
pp. 2224-2229 ◽  
Author(s):  
Daniel A. Weisz ◽  
Haijun Liu ◽  
Hao Zhang ◽  
Sundarapandian Thangapandian ◽  
Emad Tajkhorshid ◽  
...  

Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII. Its role is particularly important under stress conditions when PSII damage occurs frequently. Psb28 is not found, however, in any PSII crystal structure, and its structural location has remained unknown. In this study, we used chemical cross-linking combined with mass spectrometry to capture the transient interaction of Psb28 with PSII. We detected three cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component of the PSII reaction-center complex. These distance restraints enable us to position Psb28 on the cytosolic surface of PSII directly above cytochrome b559, in close proximity to the QB site. Protein–protein docking results also support Psb28 binding in this region. Determination of the Psb28 binding site and other biochemical evidence allow us to propose a mechanism by which Psb28 exerts its protective effect on the RC47 intermediate. This study also shows that isotope-encoded cross-linking with the “mass tags” selection criteria allows confident identification of more cross-linked peptides in PSII than has been previously reported. This approach thus holds promise to identify other transient protein–protein interactions in membrane protein complexes.



2021 ◽  
Vol 7 (9) ◽  
pp. 131
Author(s):  
Maria Chrysina ◽  
Georgia Zahariou ◽  
Nikolaos Ioannidis ◽  
Yiannis Sanakis ◽  
George Mitrikas

The biological water oxidation takes place in Photosystem II (PSII), a multi-subunit protein located in thylakoid membranes of higher plant chloroplasts and cyanobacteria. The catalytic site of PSII is a Mn4Ca cluster and is known as the oxygen evolving complex (OEC) of PSII. Two tyrosine residues D1-Tyr161 (YZ) and D2-Tyr160 (YD) are symmetrically placed in the two core subunits D1 and D2 and participate in proton coupled electron transfer reactions. YZ of PSII is near the OEC and mediates electron coupled proton transfer from Mn4Ca to the photooxidizable chlorophyll species P680+. YD does not directly interact with OEC, but is crucial for modulating the various S oxidation states of the OEC. In PSII from higher plants the environment of YD• radical has been extensively characterized only in spinach (Spinacia oleracea) Mn- depleted non functional PSII membranes. Here, we present a 2D-HYSCORE investigation in functional PSII of spinach to determine the electronic structure of YD• radical. The hyperfine couplings of the protons that interact with the YD• radical are determined and the relevant assignment is provided. A discussion on the similarities and differences between the present results and the results from studies performed in non functional PSII membranes from higher plants and PSII preparations from other organisms is given.



2003 ◽  
Vol 278 (21) ◽  
pp. 19190-19198 ◽  
Author(s):  
Mirko Gastaldelli ◽  
Giusy Canino ◽  
Roberta Croce ◽  
Roberto Bassi




2010 ◽  
Vol 99 (12) ◽  
pp. 4056-4065 ◽  
Author(s):  
Alessandro Marin ◽  
Francesca Passarini ◽  
Roberta Croce ◽  
Rienk van Grondelle


1992 ◽  
Vol 47 (1-2) ◽  
pp. 57-62 ◽  
Author(s):  
Suleyman I. Allakhverdiev ◽  
Vyacheslav V. Klimov

Abstract The effects of reversible manganese extraction on NADP+ photoreduction were studied with higher plant subchloroplast preparations of photosystem II (PS II). Under anaerobic conditions, when the reaction centers (RCs) of PS II are “closed” (i.e. in the state [P680 Pheo] QA), and in the presence of ferredoxin-ferredoxin-NADP+ reductase, NADP+ reduction is observed at a rate of 0.8 -1.1 nmol/mg × chlorophyll × h. After complete removal of manganese from PS II, the rate of NADP+ reduction is reduced 40 - 50-fold. Upon the addition of Mn at a concentration of approx. 4 Mn atoms per reaction center, the NADP+ reduction is restored up to 85 -90% of the initial value. When half of this amount of Mn is combined with about 40 times of the equivalent concentration of other divalent ions (Ca2+, Sr2+, Mg2+ etc.) the reaction is also reactivated. Dinoseb (10-6 m) an inhibitor of electron transfer in PS II prevents NADP+ photoreduction. It is concluded that under conditions when the first quinone acceptor, QA, is in its reduced state (QA-) electrons are transferred from reduced pheophytin (Pheo·̅) to NADP+, indicating that PS II can reduce NADP+ without the participation of PS I. On the basis of these and literature data, an alternate pathway for electron phototransfer in PS II reaction centers of higher plants is suggested. Some problems concerning the Z-scheme are discussed.



Sign in / Sign up

Export Citation Format

Share Document