scholarly journals Signaling between pancreatic β cells and macrophages via S100 calcium-binding protein A8 exacerbates β-cell apoptosis and islet inflammation

2018 ◽  
Vol 293 (16) ◽  
pp. 5934-5946 ◽  
Author(s):  
Hideaki Inoue ◽  
Jun Shirakawa ◽  
Yu Togashi ◽  
Kazuki Tajima ◽  
Tomoko Okuyama ◽  
...  
2020 ◽  
Author(s):  
Chunhe Lu ◽  
Jia Liu ◽  
Mingze Yao ◽  
Lun Li ◽  
Guangyu Li

Abstract Introduction: S100 Calcium Binding Protein A12 (S100A12) is a member of the S100 protein family and is widely expressed in neutrophil and low expressed in lymphocytes and monocyte. However, the role of S100A12 in glioma has not yet been identified. Methods: In the present study, we carried out immunohistochemical investigation of S100A12 in 81 glioma tissues to determine the expression of s100A12 in glioma cells, and evaluate the clinical significance of S100A12 in glioma patients. Futher we knockdown the S100A12 by ShRNA, and evaluated cell proliferation, cell migration and cell apoptosis by MTT,clony formation assay, transwell assay ,flow cytometry assa and westernblot. Results: We found that S100A12 was upregulated in tissues of glioma patients and the expression was correlated to WHO stage and tumor size. Further, we found that knockdown S100A12 inhibits the proliferation, migration and invasion of glioma cells through regulating cell apoptosis and EMT. Conclusions: These findings demonstrated a novel function for S100A12 in glioma progression and suggested that S100A12 may be served as a new marker in the tumorigenesis and progression of glioma.


2020 ◽  
Author(s):  
Chunhe Lu ◽  
Jia Liu ◽  
Mingze Yao ◽  
Lun Li ◽  
Guangyu Li

Abstract Background: S100 Calcium Binding Protein A12 (S100A12) is a member of the S100 protein family and is widely expressed in neutrophil and low expressed in lymphocytes and monocyte. However, the role of S100A12 in glioma has not yet been identified. Methods: In the present study, we carried out immunohistochemical investigation of S100A12 in 81 glioma tissues to determine the expression of s100A12 in glioma cells, and evaluate the clinical significance of S100A12 in glioma patients. Futher we knockdown the S100A12 by ShRNA, and evaluated cell proliferation, cell migration and cell apoptosis by MTT, clony formation assay, transwell assay ,flow cytometry assa and western blot. Results: We found that S100A12 was upregulated in tissues of glioma patients and the expression was correlated to WHO stage and tumor size. Further, we found that knockdown S100A12 inhibits the proliferation, migration and invasion of glioma cells through regulating cell apoptosis and EMT. Background: S100 Calcium Binding Protein A12 (S100A12) is a member of the S100 protein family and is widely expressed in neutrophil and low expressed in lymphocytes and monocyte. However, the role of S100A12 in glioma has not yet been identified. Methods: In the present study, we carried out immunohistochemical investigation of S100A12 in 81 glioma tissues to determine the expression of s100A12 in glioma cells, and evaluate the clinical significance of S100A12 in glioma patients. Futher we knockdown the S100A12 by ShRNA, and evaluated cell proliferation, cell migration and cell apoptosis by MTT, clony formation assay, transwell assay ,flow cytometry assa and western blot. Results: We found that S100A12 was upregulated in tissues of glioma patients and the expression was correlated to WHO stage and tumor size. Further, we found that knockdown S100A12 inhibits the proliferation, migration and invasion of glioma cells through regulating cell apoptosis and EMT.


2020 ◽  
Author(s):  
Chunhe Lu ◽  
Jia Liu ◽  
Mingze Yao ◽  
Lun Li ◽  
Guangyu Li

Abstract Background: S100 Calcium Binding Protein A12 (S100A12) is a member of the S100 protein family and is widely expressed in neutrophil and low expressed in lymphocytes and monocyte. However, the role of S100A12 in glioma has not yet been identified. Methods: In the present study, we carried out immunohistochemical investigation of S100A12 in 81 glioma tissues to determine the expression of s100A12 in glioma cells, and evaluate the clinical significance of S100A12 in glioma patients. Futher we knockdown the S100A12 by ShRNA, and evaluated cell proliferation, cell migration and cell apoptosis by MTT, clony formation assay, transwell assay ,flow cytometry assa and western blot. Results: We found that S100A12 was upregulated in tissues of glioma patients and the expression was correlated to WHO stage and tumor size. Further, we found that knockdown S100A12 inhibits the proliferation, migration and invasion of glioma cells through regulating cell apoptosis and EMT. Conclusion: S100A12 plays a vital role in glioma progression, and may be an important regulatory molecule for biological behaviors of glioma cell lines.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ivica Petrovic ◽  
Nada Pejnovic ◽  
Biljana Ljujic ◽  
Sladjana Pavlovic ◽  
Marina Miletic Kovacevic ◽  
...  

2020 ◽  
Author(s):  
Chunhe Lu ◽  
Jia Liu ◽  
Mingze Yao ◽  
Lun Li ◽  
Guangyu Li

Abstract Background: S100 Calcium Binding Protein A12 (S100A12) is a member of the S100 protein family and is widely expressed in neutrophil and low expressed in lymphocytes and monocyte. However, the role of S100A12 in glioma has not yet been identified. Methods: In the present study, we carried out immunohistochemical investigation of S100A12 in 81 glioma tissues to determine the expression of s100A12 in glioma cells, and evaluate the clinical significance of S100A12 in glioma patients. Futher we knockdown the S100A12 by ShRNA, and evaluated cell proliferation, cell migration and cell apoptosis by MTT, clony formation assay, transwell assay ,flow cytometry assa and western blot. Results: We found that S100A12 was upregulated in tissues of glioma patients and the expression was correlated to WHO stage and tumor size. Further, we found that knockdown S100A12 inhibits the proliferation, migration and invasion of glioma cells through regulating cell apoptosis and EMT. Conclusion: S100A12 plays a vital role in glioma progression, and may be an important regulatory molecule for biological behaviors of glioma cell lines.


2019 ◽  
Author(s):  
Chunhe Lu ◽  
Jia Liu ◽  
Mingze Yao ◽  
Lun Li ◽  
Guangyu Li

Abstract Introduction: S100 Calcium Binding Protein A12 (S100A12) is a member of the S100 protein family and is widely expressed in neutrophil and low expressed in lymphocytes and monocyte. However, the role of S100A12 in glioma has not yet been identified. Methods: In the present study, we carried out immunohistochemical investigation of S100A12 in 81 glioma tissues to determine the expression of s100A12 in glioma cells, and evaluate the clinical significance of S100A12 in glioma patients. Futher we knockdown the S100A12 by ShRNA, and evaluated cell proliferation, cell migration and cell apoptosis by MTT,clony formation assay, transwell assay ,flow cytometry assa and westernblot. Results: We found that S100A12 was upregulated in tissues of glioma patients and the expression was correlated to WHO stage and tumor size. Further, we found that knockdown S100A12 inhibits the proliferation, migration and invasion of glioma cells through regulating cell apoptosis and EMT. Conclusions: These findings demonstrated a novel function for S100A12 in glioma progression and suggested that S100A12 may be served as a new marker in the tumorigenesis and progression of glioma.


2020 ◽  
Author(s):  
Chunhe Lu ◽  
Jia Liu ◽  
Mingze Yao ◽  
Lun Li ◽  
Guangyu Li

Abstract Introduction: S100 Calcium Binding Protein A12 (S100A12) is a member of the S100 protein family and is widely expressed in neutrophil and low expressed in lymphocytes and monocyte. However, the role of S100A12 in glioma has not yet been identified. Methods: In the present study, we carried out immunohistochemical investigation of S100A12 in 81 glioma tissues to determine the expression of s100A12 in glioma cells, and evaluate the clinical significance of S100A12 in glioma patients. Futher we knockdown the S100A12 by ShRNA, and evaluated cell proliferation, cell migration and cell apoptosis by MTT,clony formation assay, transwell assay ,flow cytometry assa and westernblot. Results: We found that S100A12 was upregulated in tissues of glioma patients and the expression was correlated to WHO stage and tumor size. Further, we found that knockdown S100A12 inhibits the proliferation, migration and invasion of glioma cells through regulating cell apoptosis and EMT. Conclusions: These findings demonstrated a novel function for S100A12 in glioma progression and suggested that S100A12 may be served as a new marker in the tumorigenesis and progression of glioma.


2021 ◽  
Vol 22 (8) ◽  
pp. 3835
Author(s):  
Nicola Tempest ◽  
Elizabeth Batchelor ◽  
Christopher J. Hill ◽  
Hannan Al-Lamee ◽  
Josephine Drury ◽  
...  

Recurrent implantation failure (RIF) and recurrent pregnancy loss (RPL) are distressing conditions without effective treatments. The luminal epithelium (LE) is integral in determining receptivity of the endometrium, whereas functionalis glands and stroma aid in nurturing early embryo development. Calcium signalling pathways are known to be of vital importance to embryo implantation and pregnancy establishment, and anterior gradient protein 3 (AGR3) and S100 calcium-binding protein P (S100P) are involved with these pathways. We initially examined 20 full-thickness endometrial biopsies from premenopausal women across the menstrual cycle to characterize levels of AGR3 protein in each endometrial sub-region at the cellular level. A further 53 endometrial pipelle biopsies collected in the window of implantation were subsequently assessed to determine differential endometrial AGR3 and S100P levels relevant to RIF (n = 13) and RPL (n = 10) in comparison with parous women (n = 30) using immunohistochemistry. Significantly higher AGR3 and S100P immunostaining was observed in ciliated cells of the LE of women with recurrent reproductive failure compared with parous women, suggesting aberrant subcellular location-associated pathophysiology for these conditions. The nuclear localisation of S100P may allow transcriptional regulatory function, which is necessary for implantation of a viable pregnancy. Further work is thus warranted to assess their utility as diagnostic/therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document