scholarly journals Polyunsaturated Fatty Acyl Coenzyme A Suppress the Glucose-6-phosphatase Promoter Activity by Modulating the DNA Binding of Hepatocyte Nuclear Factor 4α

2002 ◽  
Vol 277 (18) ◽  
pp. 15736-15744 ◽  
Author(s):  
Fabienne Rajas ◽  
Amandine Gautier ◽  
Isabelle Bady ◽  
Sandrine Montano ◽  
Gilles Mithieux
2018 ◽  
Vol 314 (1) ◽  
pp. G14-G21 ◽  
Author(s):  
Saminathan Muthusamy ◽  
Jong Jin Jeong ◽  
Ming Cheng ◽  
Jessica A. Bonzo ◽  
Anoop Kumar ◽  
...  

Na+/H+ exchanger isoform 3 (NHE3) plays a key role in coupled electroneutral NaCl absorption in the mammalian intestine. Reduced NHE3 expression or function has been implicated in the pathogenesis of diarrhea associated with inflammatory bowel disease (IBD) or enteric infections. Our previous studies revealed transcriptional regulation of NHE3 by various agents such as TNF-α, IFN-γ, and butyrate involving transcription factors Sp1 and Sp3. In silico analysis revealed that the NHE3 core promoter also contains a hepatocyte nuclear factor 4α (HNF-4α) binding site that is evolutionarily conserved in several species suggesting that HNF-4α has a role in NHE3 regulation. Nhe3 mRNA levels were reduced in intestine-specific Hnf4α-null mice. However, detailed mechanisms of NHE3 regulation by HNF-4α are not known. We investigated the regulation of NHE3 gene expression by HNF-4α in vitro in the human intestinal epithelial cell line C2BBe1 and in vivo in intestine-specific Hnf4α-null ( Hnf4αΔIEpC) and control ( Hnf4αfl/fl) mice. HNF-4α knockdown by short interfering RNA in C2BBe1 cells significantly decreased NHE3 mRNA and NHE3 protein levels. Gel mobility shift and chromatin immunoprecipitation assays revealed that HNF-4α directly interacts with the HNF-4α motif in the NHE3 core promoter. Site-specific mutagenesis on the HNF-4α motif decreased, whereas ectopic overexpression of HNF-4α increased, NHE3 promoter activity. Furthermore, loss of HNF-4α in Hnf4αΔIEpC mice decreased colonic Nhe3 mRNA and NHE3 protein levels. Our results demonstrate a novel role for HNF-4α in basal regulation of NHE3 expression. These studies represent an important and novel target for therapeutic intervention in IBD-associated diarrhea. NEW & NOTEWORTHY Our studies for the first time show that hepatocyte nuclear factor 4α directly regulates NHE3 promoter activity and its basal expression in the intestine.


2006 ◽  
Vol 394 (2) ◽  
pp. 379-387 ◽  
Author(s):  
Hongtao Guo ◽  
Chengjiang Gao ◽  
Zhiyong Mi ◽  
Philip Y. Wai ◽  
Paul C. Kuo

In IL-1β (interleukin 1β)-stimulated rat hepatocytes exposed to superoxide, we have previously identified an IRX (inflammatory redox)-sensitive DR1 [direct repeat of RG(G/T)TCA with one base spacing] cis-acting activator element (nt –1327 to –1315) in the iNOS (inducible nitric oxide synthase) promoter: AGGTCAGGGGACA. The corresponding transcription factor was identified to be HNF4α (hepatocyte nuclear factor-4α). HNF4α DNA binding activity and transactivation potential are tightly regulated by its state of phosphorylation. However, the functional consequences of IRX-mediated post-translational phosphorylation of HNF4α have not been well characterized. In the setting of IL-1β+H2O2, HNF4α functional activity is associated with a unique serine/threonine phosphorylation pattern. This indicates that an IRX-sensitive serine/threonine kinase pathway targets HNF4α to augment hepatocyte iNOS transcription. In the present study, following identification of phosphorylated residues in HNF4α, serial mutations were performed to render the target residues phosphorylation-resistant. Electrophoretic mobility-shift assays and transient transfection studies utilizing the iNOS promoter showed that the S158A mutation ablates IRX-mediated HNF4α DNA binding and transactivation. Gain-of-function mutation with the S158D phosphomimetic HNF4α vector supports a critical role for Ser158 phosphorylation. In vitro phosphorylation and kinase inhibitor studies implicate p38 kinase activity. Our results indicate that p38 kinase-mediated Ser158 phosphorylation is essential for augmentation of the DNA binding and transactivation potential of HNF4α in the presence of IL-1β+H2O2. This pathway results in enhanced iNOS expression in hepatocytes exposed to pro-inflammatory cytokines and oxidative stress.


2004 ◽  
Vol 383 (3) ◽  
pp. 573-580 ◽  
Author(s):  
Bénédicte OXOMBRE ◽  
Mostafa KOUACH ◽  
Ericka MOERMAN ◽  
Pierre FORMSTECHER ◽  
Bernard LAINE

HNF4α (hepatocyte nuclear factor 4α) belongs to a complex transcription factor network that is crucial for the function of hepatocytes and pancreatic β-cells. In these cells, it activates the expression of a very large number of genes, including genes involved in the transport and metabolism of glucose and lipids. Mutations in the HNF4α gene correlate with MODY1 (maturity-onset diabetes of the young 1), a form of type II diabetes characterized by an impaired glucose-induced insulin secretion. The MODY1 G115S (Gly115→Ser) HNF4α mutation is located in the DNA-binding domain of this nuclear receptor. We show here that the G115S mutation failed to affect HNF4α-mediated transcription on apolipoprotein promoters in HepG2 cells. Conversely, in pancreatic β-cell lines, this mutation resulted in strong impairments of HNF4α transcriptional activity on the promoters of LPK (liver pyruvate kinase) and HNF1α, with this transcription factor playing a key role in endocrine pancreas. We show as well that the G115S mutation creates a PKA (protein kinase A) phosphorylation site, and that PKA-mediated phosphorylation results in a decreased transcriptional activity of the mutant. Moreover, the G115E (Gly115→Glu) mutation mimicking phosphorylation reduced HNF4α DNA-binding and transcriptional activities. Our results may account for the 100% penetrance of diabetes in human carriers of this mutation. In addition, they suggest that introduction of a phosphorylation site in the DNA-binding domain may represent a new mechanism by which a MODY1 mutation leads to loss of HNF4α function.


2018 ◽  
Vol 19 (10) ◽  
pp. 3193 ◽  
Author(s):  
Yuanyou Li ◽  
Xiaowei Zeng ◽  
Yewei Dong ◽  
Cuiying Chen ◽  
Cuihong You ◽  
...  

The rabbitfish Siganus canaliculatus is the first marine teleost shown to be able to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors catalyzed by two fatty acyl desaturases (fad) including Δ4 Fad and Δ6/Δ5 Fad as well as two elongases (Elovl4 and Elovl5). Previously, hepatocyte nuclear factor 4α (Hnf4α) was demonstrated to be predominant in the transcriptional regulation of two fads. To clarify the regulatory mechanisms involved in rabbitfish lipogenesis, the present study focused on the regulatory role of Hnf4α to elovl5 expression and LC-PUFA biosynthesis. Bioinformatics analysis predicted two potential Hnf4α elements in elovl5 promoter, one binding site was confirmed to interact with Hnf4α by gel shift assays. Moreover, overexpression of hnf4α caused a remarkable increase both in elovl5 promoter activity and mRNA contents, while knock-down of hnf4α in S. canaliculatus hepatocyte line (SCHL) resulted in a significant decrease of elovl5 gene expression. Meanwhile, hnf4α overexpression enhanced LC-PUFA biosynthesis in SCHL cell, and intraperitoneal injection to rabbitfish juveniles with Hnf4α agonists (Alverine and Benfluorex) increased the expression of hnf4α, elvol5 and Δ4 fad, coupled with an increased proportion of total LC-PUFA in liver. The results demonstrated that Hnf4α is involved in LC-PUFA biosynthesis by up-regulating the transcription of the elovl5 gene in rabbitfish, which is the first report of Hnf4α as a transcription factor of the elovl5 gene in vertebrates.


2008 ◽  
Vol 415 (2) ◽  
pp. 289-296 ◽  
Author(s):  
Zhongyan Wang ◽  
Peter A. Burke

HNF-4α (hepatocyte nuclear factor-4α) is a key regulator of liver-specific gene expression. To understand the mechanisms governing the regulation of HNF-4α function during the APR (acute-phase response), the effects of transcription co-activators, including p300, PGC-1α (peroxisome-proliferator-activated receptor-γ co-activator-1α) and SRC (steroid receptor co-activator)-1α were investigated in an injury cell model. We have shown previously that the HNF-4α-sensitive APR genes ApoB (apolipoprotein B), TTR (transthyretin) and α1-AT (α1-antitrypsin) were regulated at the DNA binding and transcriptional levels after cytokine stimulation. We now show that co-activators have a differential impact on the transactivation of HNF-4α-sensitive genes via HNF-4α-binding sites in ApoB, TTR or α1-AT promoters. PGC-1α strongly enhances the transactivation of ApoB and α1-AT and, to a lesser extent, of TTR, whereas SRC-1α and p300 only have a weak or no effect on these three genes. More importantly, it was found that PGC-1α has a novel role in the modulation of the binding ability of HNF-4α in response to cytokine treatment. Using in vitro and in vivo approaches, electrophoretic mobility-shift and chromatin immunoprecipitation assays, we demonstrate that the reduced HNF-4α–DNA binding ability induced by cytokines is eliminated by overexpression of PGC-1α. Cytokine treatment does not significantly alter the protein levels of HNF-4α and PGC-1α, but it does reduce the recruitment of PGC-1α to HNF-4α-binding sites and thereby decreases transcriptional activity. These results establish the importance of PGC-1α for HNF-4α function and describe a new HNF-4α-dependent regulatory mechanism that is involved in the response to injury.


2009 ◽  
Vol 296 (3) ◽  
pp. G524-G533 ◽  
Author(s):  
Noriaki Yamaguchi ◽  
Sachiko Miyamoto ◽  
Yuko Ogura ◽  
Toshinao Goda ◽  
Kazuhito Suruga

Cellular retinol-binding protein type II (CRBPII) is abundantly expressed in the small intestinal enterocytes of many vertebrates and plays important physiological roles in intestinal absorption, transport, and metabolism of vitamin A. In the present study, we investigated regulation of human CRBPII gene expression using human intestinal Caco-2 BBe cells. We found that the human CRBPII gene contained a direct repeat 1 (DR-1)-like nuclear receptor response element in the proximal promoter region and that endogenous hepatocyte nuclear factor-4α (HNF-4α) was a major transcription factor binding to the DR-1-like element. Cotransfection of HNF-4α expression vector transactivated the human CRBPII gene promoter activity, whereas mutation of the DR-1-like element abolished the promoter activity. Stably transfected Caco-2 BBe cells overexpressing HNF-4α significantly increased endogenous CRBPII gene expression and retinyl ester synthesis. Reduction of HNF-4α protein levels by HNF-4α small interference RNA decreased CRBPII gene expression. Caco-2 BBe cells treated with phorbol 12-myristate 13-acetate, a protein kinase C activator, decreased nuclear HNF-4α protein level and binding activity to the human CRBPII gene DR-1-like element, as well as CRBPII gene expression. Moreover, nuclear HNF-4α protein levels, HNF-4α protein binding to human CRBPII DR-1-like elements, and CRBPII gene expression level were coordinately increased during Caco-2 BBe cell differentiation. These results suggest that HNF-4α is an important transcriptional factor that regulates human CRBPII gene expression and provide the possibility for a novel function of HNF-4α in the regulation of human intestinal vitamin A absorption and metabolism.


Sign in / Sign up

Export Citation Format

Share Document