scholarly journals Activator of G-protein Signaling 1 Blocks GIRK Channel Activation by a G-protein-coupled Receptor

2002 ◽  
Vol 277 (16) ◽  
pp. 13827-13830 ◽  
Author(s):  
Aya Takesono ◽  
Mark W. Nowak ◽  
Mary Cismowski ◽  
Emir Duzic ◽  
Stephen M. Lanier
2011 ◽  
Vol 286 (22) ◽  
pp. 19259-19269 ◽  
Author(s):  
Il-Ha Lee ◽  
Sung-Hee Song ◽  
Craig R. Campbell ◽  
Sharad Kumar ◽  
David I. Cook ◽  
...  

The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na+ absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC. In the present study, we report that GRK2 also regulates ENaC by a mechanism that does not depend on its kinase activity. We show that a wild-type GRK2 (wtGRK2) and a kinase-dead GRK2 mutant (K220RGRK2), but not a GRK2 mutant that lacks the C-terminal RH domain (ΔRH-GRK2) or a GRK2 mutant that cannot interact with Gαq/11/14 (D110AGRK2), increase activity of ENaC. GRK2 up-regulates the basal activity of the channel as a consequence of its RH domain binding the α-subunits of Gq/11. We further found that expression of constitutively active Gαq/11 mutants significantly inhibits activity of ENaC. Conversely, co-expression of siRNA against Gαq/11 increases ENaC activity. The effect of Gαq on ENaC activity is not due to change in ENaC membrane expression and is independent of Nedd4-2. These findings reveal a novel mechanism by which GRK2 and Gq/11 α-subunits regulate the activity ENaC.


2020 ◽  
Vol 117 (28) ◽  
pp. 16346-16355 ◽  
Author(s):  
Amirhossein Mafi ◽  
Soo-Kyung Kim ◽  
William A. Goddard

Agonists to the μ-opioid G protein-coupled receptor (μOR) can alleviate pain through activation of G protein signaling, but they can also induce β-arrestin activation, leading to such side effects as respiratory depression. Biased ligands to μOR that induce G protein signaling without inducing β-arrestin signaling can alleviate pain while reducing side effects. However, the mechanism for stimulating β-arrestin signaling is not known, making it difficult to design optimum biased ligands. We use extensive molecular dynamics simulations to determine three-dimensional (3D) structures of activated β-arrestin2 stabilized by phosphorylated μOR bound to the morphine and D-Ala2,N-MePhe4, Gly-ol]-enkephalin (DAMGO) nonbiased agonists and to the TRV130 biased agonist. For nonbiased agonists, we find that the β-arrestin2 couples to the phosphorylated μOR by forming strong polar interactions with intracellular loop 2 (ICL2) and either the ICL3 or cytoplasmic region of transmembrane (TM6). Strikingly, Gi protein makes identical strong bonds with these same ICLs. Thus, the Gi protein and β-arrestin2 compete for the same binding site even though their recruitment leads to much different outcomes. On the other hand, we find that TRV130 has a greater tendency to bind the extracellular portion of TM2 and TM3, which repositions TM6 in the cytoplasmic region of μOR, hindering β-arrestin2 from making polar anchors to the ICL3 or to the cytosolic end of TM6. This dramatically reduces the affinity between μOR and β-arrestin2.


2014 ◽  
Vol 25 (13) ◽  
pp. 2105-2115 ◽  
Author(s):  
Hua Xu ◽  
Xiaoshan Jiang ◽  
Ke Shen ◽  
Christopher C. Fischer ◽  
Philip B. Wedegaertner

The G protein–coupled receptor (GPCR) kinases (GRKs) phosphorylate activated GPCRs at the plasma membrane (PM). Here GRK5/GRK4 chimeras and point mutations in GRK5 identify a short sequence within the regulator of G protein signaling (RGS) domain in GRK5 that is critical for GRK5 PM localization. This region of the RGS domain of GRK5 coincides with a region of GRK6 and GRK1 shown to form a hydrophobic dimeric interface (HDI) in crystal structures. Coimmunoprecipitation (coIP) and acceptor photobleaching fluorescence resonance energy transfer assays show that expressed GRK5 self-associates in cells, whereas GRK5-M165E/F166E (GRK5-EE), containing hydrophilic mutations in the HDI region of the RGS domain, displays greatly decreased coIP interactions. Both forcing dimerization of GRK5-EE, via fusion to leucine zipper motifs, and appending an extra C-terminal membrane-binding region to GRK5-EE (GRK5-EE-CT) recover PM localization. In addition, GRK5-EE displays a decreased ability to inhibit PAR1-induced calcium release compared with GRK5 wild type (wt). In contrast, PM-localized GRK5-EE-CaaX (appending a C-terminal prenylation and polybasic motif from K-ras) or GRK5-EE-CT shows comparable ability to GRK5 wt to inhibit PAR1-induced calcium release. The results suggest a novel model in which GRK5 dimerization is important for its plasma membrane localization and function.


Sign in / Sign up

Export Citation Format

Share Document