scholarly journals Substitutions in an Active Site Loop ofEscherichia coliIscS Result in Specific Defects in Fe-S Cluster and Thionucleoside Biosynthesisin Vivo

2004 ◽  
Vol 279 (19) ◽  
pp. 19551-19558 ◽  
Author(s):  
Charles T. Lauhon ◽  
Elizabeth Skovran ◽  
Hugo D. Urbina ◽  
Diana M. Downs ◽  
Larry E. Vickery

IscS catalyzes the fragmentation ofl-cysteine tol-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. InEscherichia coliIscS, the active site cysteine Cys328resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys328identified additional residues important for IscS functionin vivo. Two mutations, S326A and L333A, resulted in strains that were severely impaired in Fe-S cluster synthesisin vivo. The mutant strains were deficient in Fe-S cluster-dependent tRNA thionucleosides (s2C and ms2i6A) yet showed wild type levels of Fe-S-independent thionucleosides (s4U and mnm5s2U) that require persulfide formation and transfer.In vitro, the mutant proteins were similar to wild type in both cysteine desulfurase activity and sulfur transfer to IscU. These results indicate that residues in the active site loop can selectively affect Fe-S cluster biosynthesisin vivowithout detectably affecting persulfide delivery and suggest that additional assays may be necessary to fully represent the functions of IscS in Fe-S cluster formation.

2008 ◽  
Vol 82 (12) ◽  
pp. 6009-6016 ◽  
Author(s):  
Sindy Böttcher ◽  
Christina Maresch ◽  
Harald Granzow ◽  
Barbara G. Klupp ◽  
Jens P. Teifke ◽  
...  

ABSTRACT Herpesviruses specify a ubiquitin-specific protease activity located within their largest tegument protein. Although its biological role is still largely unclear, mutation within the active site abolished deubiquitinating (DUB) activity and decreased virus replication in vitro and in vivo. To further elucidate the role of DUB activity for herpesvirus replication, the conserved active-site cysteine at amino acid position 26 within pUL36 of Pseudorabies virus (PrV) (Suid herpesvirus 1), a neurotropic alphaherpesvirus, was mutated to serine. Whereas one-step growth kinetics of the resulting mutant virus PrV-UL36(C26S) were moderately reduced, plaque size was decreased to 62% of that of the wild-type virus. Ultrastructural analysis revealed large accumulations of unenveloped nucleocapsids in the cytoplasm, but incorporation of the tegument protein pUL37 was not abolished. After intranasal infection with PrV-UL36(C26S) mice showed survival times two times longer than those of mice infected with wild-type or rescued virus. Thus, the DUB activity is important for PrV replication in vitro and for neuroinvasion in mice.


1999 ◽  
Vol 144 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Rachel Hellman ◽  
Marc Vanhove ◽  
Annabelle Lejeune ◽  
Fred J. Stevens ◽  
Linda M. Hendershot

Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a large number of secretory pathway proteins that do not apparently interact with BiP. To begin to understand what controls the likelihood that a nascent protein entering the ER will associate with BiP, we have examined the in vivo folding of a murine λI immunoglobulin (Ig) light chain (LC). This LC is composed of two Ig domains that can fold independent of the other and that each possess multiple potential BiP-binding sequences. To detect BiP binding to the LC during folding, we used BiP ATPase mutants, which bind irreversibly to proteins, as “kinetic traps.” Although both the wild-type and mutant BiP clearly associated with the unoxidized variable region domain, we were unable to detect binding of either BiP protein to the constant region domain. A combination of in vivo and in vitro folding studies revealed that the constant domain folds rapidly and stably even in the absence of an intradomain disulfide bond. Thus, the simple presence of a BiP-binding site on a nascent chain does not ensure that BiP will bind and play a role in its folding. Instead, it appears that the rate and stability of protein folding determines whether or not a particular site is recognized, with BiP preferentially binding to proteins that fold slowly or somewhat unstably.


2020 ◽  
Vol 117 (45) ◽  
pp. 27989-27996
Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Ryoji Miyazaki ◽  
Yohei Hizukuri ◽  
Hiroyuki Mori ◽  
...  

Escherichia coliperiplasmic zinc-metallopeptidase BepA normally functions by promoting maturation of LptD, a β-barrel outer-membrane protein involved in biogenesis of lipopolysaccharides, but degrades it when its membrane assembly is hampered. These processes should be properly regulated to ensure normal biogenesis of LptD. The underlying mechanism of regulation, however, remains to be elucidated. A recently solved BepA structure has revealed unique features: In particular, the active site is buried in the protease domain and conceivably inaccessible for substrate degradation. Additionally, the His-246 residue in the loop region containing helix α9 (α9/H246 loop), which has potential flexibility and covers the active site, coordinates the zinc ion as the fourth ligand to exclude a catalytic water molecule, thereby suggesting that the crystal structure of BepA represents a latent form. To examine the roles of the α9/H246 loop in the regulation of BepA activity, we constructed BepA mutants with a His-246 mutation or a deletion of the α9/H246 loop and analyzed their activities in vivo and in vitro. These mutants exhibited an elevated protease activity and, unlike the wild-type BepA, degraded LptD that is in the normal assembly pathway. In contrast, tethering of the α9/H246 loop repressed the LptD degradation, which suggests that the flexibility of this loop is important to the exhibition of protease activity. Based on these results, we propose that the α9/H246 loop undergoes a reversible structural change that enables His-246–mediated switching (histidine switch) of its protease activity, which is important for regulated degradation of stalled/misassembled LptD.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3364-3364
Author(s):  
Laurent Burnier ◽  
Jose A. Fernandez ◽  
John H. Griffin

Abstract Abstract 3364 Activated Protein C (APC) is a circulating serine protease with two major roles to maintain homeostasis. APC acts via multiple receptors, including protease-activated receptor 1, to exert anti-apoptotic and vascular integrity protective effects. A number of protective effects of pharmacologic APC are reported in the literature, with beneficial effects in kidney, brain and irradiation-induced pathologies. The functional protections of the endogenous protein C systems are challenging to study. A better understanding of its mechanisms at different cellular levels and in different tissues is needed to enable evaluation of its further usage in humans. To that end, new tools should be considered to increase our knowledge. To help evaluate the endogenous murine protein C system and to be able to neutralize pharmacologic APC, we have made and characterized a novel rat monoclonal anti-mouse protein C antibody, SPC-54, that almost completely ablates in vitro and in vivo APC activity. In solid phase binding assays, the Kd of SPC-54 for APC was about 8 nM. In biochemical assays, SPC-54 inhibited amidolytic activity of wild-type murine APC by > 95%. SPC-54 was similarly a potent inhibitor (> 90%) of the amidolytic activity of the 5A-APC mutant. IC50 value for wild-type APC and the 5A-APC mutant were comparable. SPC-54 was pre-incubated with APC, followed by the addition of a 20 fold molar excess of biotinylated FPR-chloromethylketone, quantification of biotinylation of APC was readily made by SDS-PAGE and Western blots using infrared-coupled streptavidin. SPC-54 blocked successfully active site titration of APC using this biotinylated active site titrant. These and other experiments suggest that the SPC-54 epitope is located in the vicinity of the active site, such that it blocks different small substrates from reaching the active site. When we performed thrombin generation assays using mouse platelet-poor plasma to check whether SPC-54 was a potent blocker of APC activity in plasma, we showed that SPC-54 neutralized almost completely exogenous APC anticoagulant activity in a dose-dependent manner. Using native polyacrylamide gel migration, Western immunoblotting and immuno-precipitation with protein G-agarose, we confirmed that SPC-54 was bound to protein C in plasma after infusing mice with SPC-54 (10 mg/kg). Moreover, using a modified ELISA that is capable to quantify the pool of activatable protein C, the plasma protein C activity level was considerably decreased (> 80%) in mice after a single injection of SPC-54 (10 mg/kg), and that this effect of neutralizing circulating protein C was sustained for at least 7 days. For in vivo proof of concept, we performed murine tissue factor-induced thromboembolism experiments. Results showed a severe decrease in survival of mice that were pre-infused with SPC-54 when compared to control (survival time of 7 min vs. 42.5 min respectively, P = 0.0016). Moreover, blood perfusion in lungs of mice infused with SPC-54 (10 mg/kg) was dramatically impaired (decrease of 54%, P < 0.0001) as revealed by infrared quantification of Evans Blue dye as marker of vascular perfusion. We also used endotoxemia murine models to assess effects of SPC-54. SPC-54 decreased survival after endotoxin challenge (25 mg/kg, LD50 dose) in mice infused with SPC-54 (10 mg/kg) at 7 hours after LPS. Mortality was 100% after 36 h in the SPC-54 group, whereas controls, which received either boiled SPC-54 antibodies or PBS vehicle, showed a mortality of about 50% (P < 0.001). In summary, SPC-54 is a potent rat monoclonal antibody that neutralizes murine APC activities in vitro and in vivo. Its characteristic ability to dampen the endogenous protein C/APC system is of value to understand better the role of the endogenous protein C system in murine injury models and also to neutralize pharmacologic murine APC. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 75 (18) ◽  
pp. 5779-5786 ◽  
Author(s):  
Xianhua Yin ◽  
Roger Wheatcroft ◽  
James R. Chambers ◽  
Bianfang Liu ◽  
Jing Zhu ◽  
...  

ABSTRACT O island 48 (OI-48) of Escherichia coli consists of three functional gene clusters that encode urease, tellurite resistance (Ter), and putative adhesins Iha and AIDA-1. The functions of these clusters in enterohemorrhagic E. coli (EHEC) O157:H7 infection are unknown. Deletion mutants for these three regions were constructed and evaluated for their ability to adhere to epithelial cells in vitro and in ligated pig ileal loops. Deletion of the Ter gene cluster reduced the ability of the organism to adhere to and form large clusters on IPEC-J2 and HEp-2 cells. Complementation of the mutation by introducing the wild-type ter genes restored adherence and large-cluster formation. Tests in ligated pig ileal loops showed a decrease in colonization by the Ter-negative mutant, but the difference was not significant compared to colonization by the wild type (26.4% ± 21.2% versus 40.1% ± 19.1%; P = 0.168). The OI-48 aidA gene deletion had no effect on adherence in vitro or in vivo. Deletion of the iha and ureC genes had no effect on adherence in vitro but significantly reduced the colonization of EHEC O157:H7 in the ligated pig intestine. These data suggest that Ter, Iha, and urease may contribute to EHEC O157:H7 pathogenesis by promoting adherence of the pathogen to the host intestinal epithelium.


1993 ◽  
Vol 13 (3) ◽  
pp. 1675-1685 ◽  
Author(s):  
S Atherton-Fessler ◽  
L L Parker ◽  
R L Geahlen ◽  
H Piwnica-Worms

The kinase activity of human p34cdc2 is negatively regulated by phosphorylation at Thr-14 and Tyr-15. These residues lie within the putative nucleotide binding domain of p34cdc2. It has been proposed that phosphorylation within this motif ablates the binding of ATP to the active site of p34cdc2, thereby inhibiting p34cdc2 kinase activity (K. Gould and P. Nurse, Nature [London] 342:39-44, 1989). To understand the mechanism of this inactivation, various forms of p34cdc2 were tested for the ability to bind nucleotide. The active site of p34cdc2 was specifically modified by the MgATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The apparent Km for modification of wild-type, monomeric p34cdc2 was 148 microM FSBA and was not significantly affected by association with cyclin B. Tyrosine-phosphorylated p34cdc2 was modified by FSBA with a slightly higher Km (241 microM FSBA). FSBA modification of both tyrosine-phosphorylated and unphosphorylated p34cdc2 was competitively inhibited by ATP, and half-maximal inhibition in each case occurred at approximately 250 microM ATP. In addition to being negatively regulated by phosphorylation, the kinase activity of p34cdc2 was positively regulated by the cyclin-dependent phosphorylation of Thr-161. Mutation of p34cdc2 at Thr-161 resulted in the formation of an enzymatically inactive p34cdc2/cyclin B complex both in vivo and in vitro. However, mutation of Thr-161 did not significantly affect the ability of p34cdc2 to bind nucleotide (FSBA). Taken together, these results indicate that inhibition of p34cdc2 kinase activity by phosphorylation of Tyr-15 (within the putative ATP binding domain) or by mutation of Thr-161 involves a mechanism other than inhibition of nucleotide binding. We propose instead that the defect resides at the level of catalysis.


2000 ◽  
Vol 352 (3) ◽  
pp. 717-724 ◽  
Author(s):  
Ying-Ying CHANG ◽  
John E. CRONAN

Escherichia coli pyruvate oxidase (PoxB), a lipid-activated homotetrameric enzyme, is active on both pyruvate and 2-oxobutanoate (‘α-ketobutyrate’), although pyruvate is the favoured substrate. By localized random mutagenesis of residues chosen on the basis of a modelled active site, we obtained several PoxB enzymes that had a markedly decreased activity with the natural substrate, pyruvate, but retained full activity with 2-oxobutanoate. In each of these mutant proteins Val-380had been replaced with a smaller residue, namely alanine, glycine or serine. One of these, PoxB V380A/L253F, was shown to lack detectable pyruvate oxidase activity in vivo; this protein was purified, studied and found to have a 6-fold increase in Km for pyruvate and a 10-fold lower Vmax with this substrate. In contrast, the mutant had essentially normal kinetic constants with 2-oxobutanoate. The altered substrate specificity was reflected in a decreased rate of pyruvate binding to the latent conformer of the mutant protein owing to the V380A mutation. The L253F mutation alone had no effect on PoxB activity, although it increased the activity of proteins carrying substitutions at residue 380, as it did that of the wild-type protein. The properties of the V380A/L253F protein provide new insights into the mode of substrate binding and the unusual activation properties of this enzyme.


2019 ◽  
Vol 48 (2) ◽  
pp. 847-861 ◽  
Author(s):  
Nida Ali ◽  
Jayaraman Gowrishankar

Abstract RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5′-sensor pocket that renders enzyme activity maximal on 5′-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself (‘recessive resurrection’). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5′-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5′-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH’s endonucleolytic action.


Development ◽  
1994 ◽  
Vol 120 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Y. Grinblat ◽  
S. Zusman ◽  
G. Yee ◽  
R.O. Hynes ◽  
F.C. Kafatos

Integrins constitute a family of membrane-spanning, heterodimeric proteins that mediate adhesive interactions between cells and surrounding extracellular matrices (or other cells) and participate in signal transduction. We are interested in assessing integrin functions in the context of developing Drosophila melanogaster. This report, using mutants of the beta PS subunit encoded by the myospheroid (mys) locus, analyzes the relationships between integrin protein structure and developmental functions in an intact organism. As a first step in this analysis, we demonstrated the ability of a fragment of wild-type mys genomic DNA, introduced into the germ line in a P-element vector P[mys+], to rescue phenotypes attributed to lack of (or defects in) the endogenous beta PS during several discrete morphogenetic events. We then produced in vitro a series of modifications of the wild-type P[mys+] transposon, which encode beta PS derivatives with mutations within the small and highly conserved cytoplasmic domain. In vivo analysis of these mutant transposons led to the following conclusions. (1) The cytoplasmic tail of beta PS is essential for all developmental functions of the protein that were assayed. (2) An intron at a conserved position in the DNA sequence encoding the cytoplasmic tail is thought to participate in important alternative splicing events in vertebrate beta integrin subunit genes, but is not required for the developmental functions of the mys gene assayed here. (3) Phosphorylation on two conserved tyrosines found in the C terminus of the beta PS cytoplasmic tail is not necessary for the tested developmental functions. (4) Four highly conserved amino acid residues found in the N-terminal portion of the cytoplasmic tail are important but not critical for the developmental functions of beta PS; furthermore, the efficiencies with which these mutant proteins function during different morphogenetic processes vary greatly, strongly suggesting that the cytoplasmic interactions involving PS integrins are developmentally modulated.


1993 ◽  
Vol 13 (3) ◽  
pp. 1675-1685
Author(s):  
S Atherton-Fessler ◽  
L L Parker ◽  
R L Geahlen ◽  
H Piwnica-Worms

The kinase activity of human p34cdc2 is negatively regulated by phosphorylation at Thr-14 and Tyr-15. These residues lie within the putative nucleotide binding domain of p34cdc2. It has been proposed that phosphorylation within this motif ablates the binding of ATP to the active site of p34cdc2, thereby inhibiting p34cdc2 kinase activity (K. Gould and P. Nurse, Nature [London] 342:39-44, 1989). To understand the mechanism of this inactivation, various forms of p34cdc2 were tested for the ability to bind nucleotide. The active site of p34cdc2 was specifically modified by the MgATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The apparent Km for modification of wild-type, monomeric p34cdc2 was 148 microM FSBA and was not significantly affected by association with cyclin B. Tyrosine-phosphorylated p34cdc2 was modified by FSBA with a slightly higher Km (241 microM FSBA). FSBA modification of both tyrosine-phosphorylated and unphosphorylated p34cdc2 was competitively inhibited by ATP, and half-maximal inhibition in each case occurred at approximately 250 microM ATP. In addition to being negatively regulated by phosphorylation, the kinase activity of p34cdc2 was positively regulated by the cyclin-dependent phosphorylation of Thr-161. Mutation of p34cdc2 at Thr-161 resulted in the formation of an enzymatically inactive p34cdc2/cyclin B complex both in vivo and in vitro. However, mutation of Thr-161 did not significantly affect the ability of p34cdc2 to bind nucleotide (FSBA). Taken together, these results indicate that inhibition of p34cdc2 kinase activity by phosphorylation of Tyr-15 (within the putative ATP binding domain) or by mutation of Thr-161 involves a mechanism other than inhibition of nucleotide binding. We propose instead that the defect resides at the level of catalysis.


Sign in / Sign up

Export Citation Format

Share Document