scholarly journals Mechanisms of p34cdc2 regulation.

1993 ◽  
Vol 13 (3) ◽  
pp. 1675-1685 ◽  
Author(s):  
S Atherton-Fessler ◽  
L L Parker ◽  
R L Geahlen ◽  
H Piwnica-Worms

The kinase activity of human p34cdc2 is negatively regulated by phosphorylation at Thr-14 and Tyr-15. These residues lie within the putative nucleotide binding domain of p34cdc2. It has been proposed that phosphorylation within this motif ablates the binding of ATP to the active site of p34cdc2, thereby inhibiting p34cdc2 kinase activity (K. Gould and P. Nurse, Nature [London] 342:39-44, 1989). To understand the mechanism of this inactivation, various forms of p34cdc2 were tested for the ability to bind nucleotide. The active site of p34cdc2 was specifically modified by the MgATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The apparent Km for modification of wild-type, monomeric p34cdc2 was 148 microM FSBA and was not significantly affected by association with cyclin B. Tyrosine-phosphorylated p34cdc2 was modified by FSBA with a slightly higher Km (241 microM FSBA). FSBA modification of both tyrosine-phosphorylated and unphosphorylated p34cdc2 was competitively inhibited by ATP, and half-maximal inhibition in each case occurred at approximately 250 microM ATP. In addition to being negatively regulated by phosphorylation, the kinase activity of p34cdc2 was positively regulated by the cyclin-dependent phosphorylation of Thr-161. Mutation of p34cdc2 at Thr-161 resulted in the formation of an enzymatically inactive p34cdc2/cyclin B complex both in vivo and in vitro. However, mutation of Thr-161 did not significantly affect the ability of p34cdc2 to bind nucleotide (FSBA). Taken together, these results indicate that inhibition of p34cdc2 kinase activity by phosphorylation of Tyr-15 (within the putative ATP binding domain) or by mutation of Thr-161 involves a mechanism other than inhibition of nucleotide binding. We propose instead that the defect resides at the level of catalysis.

1993 ◽  
Vol 13 (3) ◽  
pp. 1675-1685
Author(s):  
S Atherton-Fessler ◽  
L L Parker ◽  
R L Geahlen ◽  
H Piwnica-Worms

The kinase activity of human p34cdc2 is negatively regulated by phosphorylation at Thr-14 and Tyr-15. These residues lie within the putative nucleotide binding domain of p34cdc2. It has been proposed that phosphorylation within this motif ablates the binding of ATP to the active site of p34cdc2, thereby inhibiting p34cdc2 kinase activity (K. Gould and P. Nurse, Nature [London] 342:39-44, 1989). To understand the mechanism of this inactivation, various forms of p34cdc2 were tested for the ability to bind nucleotide. The active site of p34cdc2 was specifically modified by the MgATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The apparent Km for modification of wild-type, monomeric p34cdc2 was 148 microM FSBA and was not significantly affected by association with cyclin B. Tyrosine-phosphorylated p34cdc2 was modified by FSBA with a slightly higher Km (241 microM FSBA). FSBA modification of both tyrosine-phosphorylated and unphosphorylated p34cdc2 was competitively inhibited by ATP, and half-maximal inhibition in each case occurred at approximately 250 microM ATP. In addition to being negatively regulated by phosphorylation, the kinase activity of p34cdc2 was positively regulated by the cyclin-dependent phosphorylation of Thr-161. Mutation of p34cdc2 at Thr-161 resulted in the formation of an enzymatically inactive p34cdc2/cyclin B complex both in vivo and in vitro. However, mutation of Thr-161 did not significantly affect the ability of p34cdc2 to bind nucleotide (FSBA). Taken together, these results indicate that inhibition of p34cdc2 kinase activity by phosphorylation of Tyr-15 (within the putative ATP binding domain) or by mutation of Thr-161 involves a mechanism other than inhibition of nucleotide binding. We propose instead that the defect resides at the level of catalysis.


2020 ◽  
Vol 117 (45) ◽  
pp. 27989-27996
Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Ryoji Miyazaki ◽  
Yohei Hizukuri ◽  
Hiroyuki Mori ◽  
...  

Escherichia coliperiplasmic zinc-metallopeptidase BepA normally functions by promoting maturation of LptD, a β-barrel outer-membrane protein involved in biogenesis of lipopolysaccharides, but degrades it when its membrane assembly is hampered. These processes should be properly regulated to ensure normal biogenesis of LptD. The underlying mechanism of regulation, however, remains to be elucidated. A recently solved BepA structure has revealed unique features: In particular, the active site is buried in the protease domain and conceivably inaccessible for substrate degradation. Additionally, the His-246 residue in the loop region containing helix α9 (α9/H246 loop), which has potential flexibility and covers the active site, coordinates the zinc ion as the fourth ligand to exclude a catalytic water molecule, thereby suggesting that the crystal structure of BepA represents a latent form. To examine the roles of the α9/H246 loop in the regulation of BepA activity, we constructed BepA mutants with a His-246 mutation or a deletion of the α9/H246 loop and analyzed their activities in vivo and in vitro. These mutants exhibited an elevated protease activity and, unlike the wild-type BepA, degraded LptD that is in the normal assembly pathway. In contrast, tethering of the α9/H246 loop repressed the LptD degradation, which suggests that the flexibility of this loop is important to the exhibition of protease activity. Based on these results, we propose that the α9/H246 loop undergoes a reversible structural change that enables His-246–mediated switching (histidine switch) of its protease activity, which is important for regulated degradation of stalled/misassembled LptD.


2007 ◽  
Vol 27 (23) ◽  
pp. 8049-8064 ◽  
Author(s):  
Michael J. Muskus ◽  
Fabian Preuss ◽  
Jin-Yuan Fan ◽  
Edward S. Bjes ◽  
Jeffrey L. Price

ABSTRACT A mutation (K38R) which specifically eliminates kinase activity was created in the Drosophila melanogaster ckI gene (doubletime [dbt]). In vitro, DBT protein carrying the K38R mutation (DBTK/R) interacted with Period protein (PER) but lacked kinase activity. In cell culture and in flies, DBTK/R antagonized the phosphorylation and degradation of PER, and it damped the oscillation of PER in vivo. Overexpression of short-period, long-period, or wild-type DBT in flies produced the same circadian periods produced by the corresponding alleles of the endogenous gene. These mutations therefore dictate an altered “set point” for period length that is not altered by overexpression. Overexpression of the DBTK/R produced effects proportional to the titration of endogenous DBT, with long circadian periods at lower expression levels and arrhythmicity at higher levels. This first analysis of adult flies with a virtual lack of DBT activity demonstrates that DBT's kinase activity is necessary for normal circadian rhythms and that a general reduction of DBT kinase activity does not produce short periods.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3364-3364
Author(s):  
Laurent Burnier ◽  
Jose A. Fernandez ◽  
John H. Griffin

Abstract Abstract 3364 Activated Protein C (APC) is a circulating serine protease with two major roles to maintain homeostasis. APC acts via multiple receptors, including protease-activated receptor 1, to exert anti-apoptotic and vascular integrity protective effects. A number of protective effects of pharmacologic APC are reported in the literature, with beneficial effects in kidney, brain and irradiation-induced pathologies. The functional protections of the endogenous protein C systems are challenging to study. A better understanding of its mechanisms at different cellular levels and in different tissues is needed to enable evaluation of its further usage in humans. To that end, new tools should be considered to increase our knowledge. To help evaluate the endogenous murine protein C system and to be able to neutralize pharmacologic APC, we have made and characterized a novel rat monoclonal anti-mouse protein C antibody, SPC-54, that almost completely ablates in vitro and in vivo APC activity. In solid phase binding assays, the Kd of SPC-54 for APC was about 8 nM. In biochemical assays, SPC-54 inhibited amidolytic activity of wild-type murine APC by > 95%. SPC-54 was similarly a potent inhibitor (> 90%) of the amidolytic activity of the 5A-APC mutant. IC50 value for wild-type APC and the 5A-APC mutant were comparable. SPC-54 was pre-incubated with APC, followed by the addition of a 20 fold molar excess of biotinylated FPR-chloromethylketone, quantification of biotinylation of APC was readily made by SDS-PAGE and Western blots using infrared-coupled streptavidin. SPC-54 blocked successfully active site titration of APC using this biotinylated active site titrant. These and other experiments suggest that the SPC-54 epitope is located in the vicinity of the active site, such that it blocks different small substrates from reaching the active site. When we performed thrombin generation assays using mouse platelet-poor plasma to check whether SPC-54 was a potent blocker of APC activity in plasma, we showed that SPC-54 neutralized almost completely exogenous APC anticoagulant activity in a dose-dependent manner. Using native polyacrylamide gel migration, Western immunoblotting and immuno-precipitation with protein G-agarose, we confirmed that SPC-54 was bound to protein C in plasma after infusing mice with SPC-54 (10 mg/kg). Moreover, using a modified ELISA that is capable to quantify the pool of activatable protein C, the plasma protein C activity level was considerably decreased (> 80%) in mice after a single injection of SPC-54 (10 mg/kg), and that this effect of neutralizing circulating protein C was sustained for at least 7 days. For in vivo proof of concept, we performed murine tissue factor-induced thromboembolism experiments. Results showed a severe decrease in survival of mice that were pre-infused with SPC-54 when compared to control (survival time of 7 min vs. 42.5 min respectively, P = 0.0016). Moreover, blood perfusion in lungs of mice infused with SPC-54 (10 mg/kg) was dramatically impaired (decrease of 54%, P < 0.0001) as revealed by infrared quantification of Evans Blue dye as marker of vascular perfusion. We also used endotoxemia murine models to assess effects of SPC-54. SPC-54 decreased survival after endotoxin challenge (25 mg/kg, LD50 dose) in mice infused with SPC-54 (10 mg/kg) at 7 hours after LPS. Mortality was 100% after 36 h in the SPC-54 group, whereas controls, which received either boiled SPC-54 antibodies or PBS vehicle, showed a mortality of about 50% (P < 0.001). In summary, SPC-54 is a potent rat monoclonal antibody that neutralizes murine APC activities in vitro and in vivo. Its characteristic ability to dampen the endogenous protein C/APC system is of value to understand better the role of the endogenous protein C system in murine injury models and also to neutralize pharmacologic murine APC. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 15 (12) ◽  
pp. 7143-7151 ◽  
Author(s):  
K S Lee ◽  
Y L Yuan ◽  
R Kuriyama ◽  
R L Erikson

PLK (STPK13) encodes a murine protein kinase closely related to those encoded by the Drosophila melanogaster polo gene and the Saccharomyces cerevisiae CDC5 gene, which are required for normal mitotic and meiotic divisions. Affinity-purified antibody generated against the C-terminal 13 amino acids of Plk specifically recognizes a single polypeptide of 66 kDa in MELC, NIH 3T3, and HeLa cellular extracts. The expression levels of both poly(A)+ PLK mRNA and its encoded protein are most abundant about 17 h after serum stimulation of NIH 3T3 cells. Plk protein begins to accumulate at the S/G2 boundary and reaches the maximum level at the G2/M boundary in continuously cycling cells. Concurrent with cyclin B-associated cdc2 kinase activity, Plk kinase activity sharply peaks at the onset of mitosis. Plk enzymatic activity gradually decreases as M phase proceeds but persists longer than cyclin B-associated cdc2 kinase activity. Plk is localized to the area surrounding the chromosomes in prometaphase, appears condensed as several discrete bands along the spindle axis at the interzone in anaphase, and finally concentrates at the midbody during telophase and cytokinesis. Plk and CHO1/mitotic kinesin-like protein 1 (MKLP-1), which induces microtubule bundling and antiparallel movement in vitro, are colocalized during late M phase. In addition, CHO1/MKLP-1 appears to interact with Plk in vivo and to be phosphorylated by Plk-associated kinase activity in vitro.


2019 ◽  
Vol 48 (2) ◽  
pp. 847-861 ◽  
Author(s):  
Nida Ali ◽  
Jayaraman Gowrishankar

Abstract RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5′-sensor pocket that renders enzyme activity maximal on 5′-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself (‘recessive resurrection’). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5′-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5′-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH’s endonucleolytic action.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1021-1021 ◽  
Author(s):  
John T. Powers ◽  
Mohammad Azam ◽  
Nathanael S. Gray ◽  
George Q. Daley

Abstract The Bcr-abl kinase is the causative agent for chronic myeloid leukemia (CML) and has been established as the primary clinical target for treatment of the disease through extensive use of Imatinib. Imatinib is the defining member of a class of ATP-binding site competitive inhibitors that lock Bcr-abl in an inactive conformation. Mutational screens of Bcr-abl using Imatinib and its derivatives as probes have been highly informative in prediction of clinically relevant mutations of Bcr-abl as well as in revealing the structure/function relationship of the kinase in general. Using compounds with a distinct mechanism of action from the Imatinib class to interrogate Bcr-abl will contribute to both more complete understanding of kinase function as well as to potential combination therapies for more effective treatment of CML. GNF-2, a recently identified inhibitor of Bcr-abl, establishes a new class of non-ATP competitive Bcr-abl family kinase inhibitors that may be developed as therapeutic agents for CML. GNF-2 effectively impairs the in vivo kinase activity of Bcr-abl and the growth of Bcr-abl transformed cells. GNF-2 functions at least in part through association with the myristate binding pocket of Bcr-abl. In order to further elucidate the mechanism of GNF-2 action as well as clinically relevant GNF-2 resistant mutants of Bcr-abl, a mutational screen coupling Bcr-abl mutagenesis to selection of drug resistance was performed using GNF-2 as probe. A number of functionally distinct resistant Bcr-abl mutations were recovered. Over half of all GNF-2 resistant clones harbored Bcr-abl mutations affecting the myristate binding pocket or the abl-SH3 domain, suggesting two potential methods of mutational resistance. The myristate binding domain mutants support a direct resistance model whereby GNF-2 association with Bcr-abl is impaired by disruption of the myristate binding pocket. Given a previous report that GNF-2 cannot inhibit Bcr-abl kinase activity in vitro, a novel model emerges for indirect resistance to GNF-2 by SH3 mutants that lose affinity for an inhibitory associated protein. The indirect resistance model specifically suggests that GNF-2 association confers a structural state of wildtype Bcr-abl which facilitates association to a putative inhibitory binding partner, thereby affecting inhibition. Indeed, the strongest of several candidate inhibitory binding partners, the Abl-SH3 domain binding inhibitor Abi-2 was observed to co-immunoprecipitate with Bcr-abl in the presence of GNF-2. This association correlated with reduced Bcr-abl auto-phosphorylation levels. These observations provide preliminary support for an indirect mechanism of Bcr-abl inhibition by GNF-2. Additional experiments involving shRNA knockdown of Abi-2 are being completed to determine the requirement of this Bcr-abl binding partner for GNF-2 activity. Further characterization of the SH3 and myristate binding domain mutants in the context of Abi-2 and GNF-2 binding affinities may establish a previously undescribed indirect mechanism of Bcr-abl inhibition by an allosteric non-ATP inhibitor.


1999 ◽  
Vol 19 (4) ◽  
pp. 3167-3176 ◽  
Author(s):  
Magali Kitzmann ◽  
Marie Vandromme ◽  
Valerie Schaeffer ◽  
Gilles Carnac ◽  
Jean-Claude Labbé ◽  
...  

ABSTRACT We have examined the role of protein phosphorylation in the modulation of the key muscle-specific transcription factor MyoD. We show that MyoD is highly phosphorylated in growing myoblasts and undergoes substantial dephosphorylation during differentiation. MyoD can be efficiently phosphorylated in vitro by either purified cdk1-cyclin B or cdk1 and cdk2 immunoprecipitated from proliferative myoblasts. Comparative two-dimensional tryptic phosphopeptide mapping combined with site-directed mutagenesis revealed that cdk1 and cdk2 phosphorylate MyoD on serine 200 in proliferative myoblasts. In addition, when the seven proline-directed sites in MyoD were individually mutated, only substitution of serine 200 to a nonphosphorylatable alanine (MyoD-Ala200) abolished the slower-migrating hyperphosphorylated form of MyoD, seen either in vitro after phosphorylation by cdk1-cyclin B or in vivo following overexpression in 10T1/2 cells. The MyoD-Ala200 mutant displayed activity threefold higher than that of wild-type MyoD in transactivation of an E-box-dependent reporter gene and promoted markedly enhanced myogenic conversion and fusion of 10T1/2 fibroblasts into muscle cells. In addition, the half-life of MyoD-Ala200 protein was longer than that of wild-type MyoD, substantiating a role of Ser200 phosphorylation in regulating MyoD turnover in proliferative myoblasts. Taken together, our data show that direct phosphorylation of MyoD Ser200 by cdk1 and cdk2 plays an integral role in compromising MyoD activity during myoblast proliferation.


2017 ◽  
Vol 28 (12) ◽  
pp. 1591-1600 ◽  
Author(s):  
Yohei Matsunaga ◽  
Hyundoo Hwang ◽  
Barbara Franke ◽  
Rhys Williams ◽  
McKenna Penley ◽  
...  

Muscle sarcomeres contain giant polypeptides composed of multiple immunoglobulin and fibronectin domains and one or two protein kinase domains. Although binding partners for a number of this family’s kinase domains have been identified, the catalytic necessity of these kinase domains remains unknown. In addition, various members of this kinase family are suspected pseudokinases with no or little activity. Here we address catalytic necessity for the first time, using the prototypic invertebrate representative twitchin (UNC-22) from Caenorhabditis elegans. In in vitro experiments, change of a conserved lysine (K) that is involved in ATP coordination to alanine (A) resulted in elimination of kinase activity without affecting the overall structure of the kinase domain. The same mutation, unc-22(sf21), was generated in the endogenous twitchin gene. The unc-22(sf21) worms have well-organized sarcomeres. However, unc-22(sf21) mutants move faster than wild-type worms and, by optogenetic experiments, contract more. Wild-type nematodes exhibited greater competitive fitness than unc-22(sf21) mutants. Thus the catalytic activity of twitchin kinase has a role in vivo, where it inhibits muscle activity and is likely maintained by selection.


1996 ◽  
Vol 16 (3) ◽  
pp. 998-1005 ◽  
Author(s):  
J Liu ◽  
Y Wu ◽  
G Z Ma ◽  
D Lu ◽  
L Haataja ◽  
...  

The first exon of the BCR gene encodes a new serine/threonine protein kinase. Abnormal fusion of the BCR and ABL genes, resulting from the formation of the Philadelphia chromosome (Ph), is the hallmark of Ph-positive leukemia. We have previously demonstrated that the Bcr protein is tyrosine phosphorylated within first-exon sequences by the Bcr-Abl oncoprotein. Here we report that in addition to tyrose 177 (Y-177), Y-360 and Y283 are phosphorylated in Bcr-Abl proteins in vitro. Moreover, Bcr tyrosine 360 is phosphorylated in vivo within both Bcr-Abl and Bcr. Bcr mutant Y177F had a greatly reduced ability to transphosphorylate casein and histone H1, whereas Bcr mutants Y177F and Y283F had wild-type activities. In contrast, the Y360F mutation had little effect on Bcr's autophosphorylation activity. Tyrosine-phosphorylated Bcr, phosphorylated in vitro by Bcr-Abl, was greatly inhibited in its serine/threonine kinase activity, impairing both auto- and transkinase activities of Bcr. Similarly, the isolation of Bcr from cells expressing Bcr-Abl under conditions that preserve phosphotyrosine residues also reduced Bcr's kinase activity. These results indicate that tyrosine 360 of Bcr is critical for the transphosphorylation activity of Bcr and that in Ph-positive leukemia, Bcr serine/threonine kinase activity is seriously impaired.


Sign in / Sign up

Export Citation Format

Share Document