scholarly journals Regulation of Bone Morphogenetic Protein-4 by Matrix GLA Protein in Vascular Endothelial Cells Involves Activin-like Kinase Receptor 1

2006 ◽  
Vol 281 (45) ◽  
pp. 33921-33930 ◽  
Author(s):  
Yucheng Yao ◽  
Amina F. Zebboudj ◽  
Esther Shao ◽  
Martin Perez ◽  
Kristina Boström
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xu Yang ◽  
Na Niu ◽  
Chen Liang ◽  
Ming-Ming Wu ◽  
Liang-Liang Tang ◽  
...  

Previous studies have shown that high salt induces artery stiffness by causing endothelial dysfunction via increased sodium influx. We used our unique split-open artery technique combined with protein biochemistry and in vitro measurement of vascular tone to test a hypothesis that bone morphogenetic protein 4 (BMP4) mediates high salt-induced loss of vascular relaxation by stimulating the epithelial sodium channel (ENaC) in endothelial cells. The data show that high salt intake increased BMP4 both in endothelial cells and in the serum and that exogenous BMP4 stimulated ENaC in endothelial cells. The data also show that the stimulation is mediated by p38 mitogen-activated protein kinases (p38 MAPK) and serum and glucocorticoid-regulated kinase 1 (Sgk1)/neural precursor cell expressed developmentally downregulated gene 4-2 (Nedd4-2) (Sgk1/Nedd4-2). Furthermore, BMP4 decreased mesenteric artery relaxation in a benzamil-sensitive manner. These results suggest that high salt intake stimulates endothelial cells to express and release BMP4 and that the released BMP4 reduces artery relaxation by stimulating ENaC in endothelial cells. Therefore, stimulation of ENaC in endothelial cells by BMP4 may serve as another pathway to participate in the complex mechanism of salt-sensitive (SS) hypertension.


2007 ◽  
Vol 27 (4) ◽  
pp. 776-782 ◽  
Author(s):  
Anna Csiszar ◽  
Nazar Labinskyy ◽  
Kira E. Smith ◽  
Aracelie Rivera ◽  
Erik N.T.P. Bakker ◽  
...  

2017 ◽  
Vol 117 (04) ◽  
pp. 734-749 ◽  
Author(s):  
Erika Saretzki ◽  
Franziska Pankratz ◽  
Bianca Engert ◽  
Sebastian Grundmann ◽  
Christoph Bode ◽  
...  

SummaryMicroRNAs are small non-coding RNAs that negatively regulate posttranscriptional gene expression. Several microRNAs have been described to regulate the process of angiogenesis. Previously, we have shown that bone morphogenetic protein 4 (BMP4) increased the proangiogenic activity of endothelial cells. In this project, we now investigated how the pro-angiogenic BMP4 effect is mediated by microRNAs. First, we performed a microRNA array with BMP4-stimulated human umbilical vein endothelial cells (HUVECs). Among the topregulated microRNAs, we detected a decreased expression of miR-494 and increased expression of miR-126–5p. Next, we analysed the canonical Smad and alternative signalling pathways, through which BMP4 would regulate miR-126–5p and miR-494 expression. Furthermore, the functional effect of miR-494 and miR-126–5p on endothelial cells was investigated. MicroRNA-494 overexpression decreased endothelial cell proliferation, migration and sprout formation. Consistently, miR-494 inhibition increased endothelial cell function. As potential miR-494 targets, bFGF and BMP endothelial cell precursorderived regulator (BMPER) were identified and confirmed by western blot. Luciferase assays showed direct miR-494 binding in BMPER 3’UTR. In contrast, miR-126–5p overexpression increased pro-angiogenic endothelial cell behaviour and, accordingly, miR-126–5p inhibition decreased endothelial cell function. As a direct miR-126–5p target we identified the anti-angiogenic thrombospondin-1 which was confirmed by western blot analysis and luciferase assays. In the Matrigel plug assay application of antagomiR-494 increased endothelial cell ingrowth, whereas antagomiR-126–5p treatment decreased cell ingrowth in vivo. Taken together, through differential regulation of the anti-angiomiR-494 and the angiomiR-126–5p by BMP4 both microRNAs contribute to the pro-angiogenic BMP4 effect on endothelial cells.Supplementary Material to this article is available online at www.thrombosis-online.com.


2003 ◽  
Vol 23 (13) ◽  
pp. 4627-4636 ◽  
Author(s):  
Mari Kiyono ◽  
Masabumi Shibuya

ABSTRACT Programmed capillary regression is essential for development, but little is known about the mechanism behind this phenomenon. In this study, we characterized the molecular determinants of capillary regression utilizing the pupillary membrane (PM) in the newborn rat's eye. We observed in the 1-day-culture system that apoptotic endothelial cells decrease in number with the addition of a natural antagonist, Noggin, strongly suggesting the involvement of the bone morphogenetic protein (BMP) family in PM regression. In addition, the lens-conditioned medium (Lens-CM) induced apoptosis of HUVE cells and inhibited endothelial tubulogenesis, which were completely blocked by both Noggin and the BMP4-specific neutralizing antibody. Activation of BMP4 pathway in endothelial cells was confirmed by both the up-regulation of Msx genes correlated with apoptosis and the translocation of Smad1 into the nucleus. We showed a transient expression of BMP4 in Lens-CM by immunoprecipitation assay. Furthermore, the transcorneal injection of BMP4 in rats enhanced the apoptosis of PMs, while that of Noggin attenuated it. These results indicate that BMP4 pathways play pivotal roles in capillary regression in a paracrine manner between lens and PMs.


Sign in / Sign up

Export Citation Format

Share Document