scholarly journals Cathepsin Cs Are Key for the Intracellular Survival of the Protozoan Parasite, Toxoplasma gondii

2006 ◽  
Vol 282 (7) ◽  
pp. 4994-5003 ◽  
Author(s):  
Xuchu Que ◽  
Juan C. Engel ◽  
David Ferguson ◽  
Annette Wunderlich ◽  
Stanislas Tomavo ◽  
...  

Cysteine proteases play key roles in apicomplexan invasion, organellar biogenesis, and intracellular survival. We have now characterized five genes encoding papain family cathepsins from Toxoplasma gondii, including three cathepsin Cs, one cathepsin B, and one cathepsin L. Unlike endopeptidases cathepsin B and L, T. gondii cathepsin Cs are exopeptidases and remove dipeptides from unblocked N-terminal substrates of proteins or peptides. TgCPC1 was the most highly expressed cathepsin mRNA in tachyzoites (by real-time PCR), but three cathepsins, TgCPC1, TgCPC2, and TgCPB, were undetectable in in vivo bradyzoites. The specific cathepsin C inhibitor, Gly-Phe-dimethylketone, selectively inhibited the TgCPCs activity, reducing parasite intracellular growth and proliferation. The targeted disruption of TgCPC1 does not affect the invasion and growth of tachyzoites as TgCPC2 is then up-regulated and may substitute for TgCPC1. TgCPC1 and TgCPC2 localize to constitutive secretory vesicles of tachyzoites, the dense granules. T. gondii cathepsin Cs are required for peptide degradation in the parasitophorous vacuole as the degradation of the marker protein, Escherichia coli β-lactamase, secreted into the parasitophorous vacuole of transgenic tachyzoites was completely inhibited by the cathepsin C inhibitor. Cathepsin C inhibitors also limited the in vivo infection of T. gondii in the chick embryo model of toxoplasmosis. Thus, cathepsin Cs are critical to T. gondii growth and differentiation, and their unique specificities could be exploited to develop novel chemotherapeutic agents.

2006 ◽  
Vol 387 (7) ◽  
pp. 885-891 ◽  
Author(s):  
Lisa Sevenich ◽  
Len A. Pennacchio ◽  
Christoph Peters ◽  
Thomas Reinheckel

Abstract Cathepsin B (CTSB) and cathepsin L (CTSL) are two widely expressed cysteine proteases thought to predominantly reside within lysosomes. Functional analysis of CTSL in humans is complicated by the existence of two CTSL-like homologs (CTSL and CTSL2), in contrast to mice, which possess only one CTSL enzyme. Thus, transgenic expression of human CTSL in CTSL-deficient mice provides an opportunity to study the in vivo functions of this human protease without interference by its highly related homolog. While mice with single-gene deficiencies for murine CTSB or CTSL survive without apparent neuromuscular impairment, murine CTSB/CTSL double-deficient mice display degeneration of cerebellar Purkinje cells and neurons of the cerebral cortex, resulting in severe hypotrophy, motility defects, and lethality during their third to fourth week of life. Here we show that expression of human CTSL through a genomic transgene results in widespread expression of human CTSL in the mouse that is capable of rescuing the lethality found in CTSB/CTSL double-deficient animals. Human CTSL is expressed in the brain of these compound mutants, predominantly in neurons of the cerebral cortex and in Purkinje cells of the cerebellum, where it appears to prevent neuronal cell death.


2005 ◽  
Vol 386 (7) ◽  
pp. 699-704 ◽  
Author(s):  
Luciano Puzer ◽  
Juliana Vercesi ◽  
Marcio F.M. Alves ◽  
Nilana M.T. Barros ◽  
Mariana S. Araujo ◽  
...  

Abstract We investigated the ability of cathepsin L to induce a hypotensive effect after intravenous injection in rats and correlated this decrease in blood pressure with kinin generation. Simultaneously with blood pressure decrease, we detected plasma kininogen depletion in the treated rats. The effect observed in vivo was abolished by pre-incubation of cathepsin L with the cysteine peptidase-specific inhibitor E-64 (1 μM) or by previous administration of the bradykinin B2 receptor antagonist JE049 (4 mg/kg). A potentiation of the hypotensive effect caused by cathepsin L was observed by previous administration of the angiotensin I-converting enzyme inhibitor captopril (5 mg/kg). In vitro studies indicated that cathepsin L excised bradykinin from the synthetic fluorogenic peptide Abz-MTSVIRRPPGFSPFRAPRV-NH2, based on the Met375–Val393 sequence of rat kininogen (Abz=o-aminobenzoic acid). In conclusion, our data indicate that in vivo cathepsin L releases a kinin-related peptide, and in vitro experiments suggest that the kinin generated is bradykinin. Although it is well known that cysteine proteases are strongly inhibited by kininogen, cathepsin L could represent an alternative pathway for kinin production in pathological processes.


1997 ◽  
Vol 110 (17) ◽  
pp. 2117-2128 ◽  
Author(s):  
A.P. Sinai ◽  
P. Webster ◽  
K.A. Joiner

The parasitophorous vacuole membrane (PVM) of the obligate intracellular protozoan parasite Toxoplasma gondii forms tight associations with host mitochondria and the endoplasmic reticulum (ER). We have used a combination of morphometric and biochemical approaches to characterize this unique phenomenon, which we term PVM-organelle association. The PVM is separated from associated mitochondria and ER by a mean distance of 12 and 18 nm, respectively. The establishment of PVM-organelle association is dependent on active parasite entry, but does not require parasite viability for its maintenance. Association is not a consequence of spatial constraints imposed on the growing vacuole. Morphometric analysis indicates that the extent of mitochondrial association with the PVM stays constant as the vacuole enlarges, whereas the extent of ER association decreases. Disruption of host cell microtubules partially blocks the establishment but not the maintenance of PVM-mitochondrial association, and has no significant effect on PVM-ER association. PVM-organelle association is maintained following disruption of infected host cells, as assessed by electron microscopy and by sub-cellular fractionation showing co-migration of fixed PVM and organelle markers. Taken together, the data suggest that a high affinity, potentially protein-protein interaction between parasite and organelle components is responsible for PVM-organelle association.


2001 ◽  
Vol 45 (6) ◽  
pp. 1743-1745 ◽  
Author(s):  
Graham H. Coombs ◽  
Jeremy C. Mottram

ABSTRACT Methionine γ-lyase, the enzyme which catalyzes the single-step conversion of methionine to α-ketobutyrate, ammonia, and methanethiol, is highly active in many anaerobic pathogenic microorganisms but has no counterpart in mammals. This study tested the hypothesis that this pathogen-specific enzyme can be exploited as a drug target by prodrugs that are exclusively activated by it. Trifluoromethionine was confirmed as such a prodrug and shown to be highly toxic in vitro to the anaerobic protozoan parasiteTrichomonas vaginalis, to anaerobic bacteria containing methionine γ-lyase, and to Escherichia coli expressing the trichomonad gene. The compound also has exceptional activity against the parasite growing in vivo, with a single dose preventing lesion formation in five of the six mice challenged. These findings suggest that trifluoromethionine represents a lead compound for a novel class of anti-infective drugs with potential as chemotherapeutic agents against a range of prokaryotic and eukaryotic anaerobic pathogens.


1997 ◽  
Vol 41 (10) ◽  
pp. 2137-2140 ◽  
Author(s):  
F G Araujo ◽  
A A Khan ◽  
T L Slifer ◽  
A Bryskier ◽  
J S Remington

Ketolides are a new class of macrolide antibiotics that have been shown to be active against a variety of bacteria including macrolide-resistant bacteria and mycobacteria. We examined two ketolides, HMR 3647 and HMR 3004, for their in vitro and in vivo activities against the protozoan parasite Toxoplasma gondii. In vitro, both ketolides at concentrations as low as 0.05 microg/ml markedly inhibited replication of tachyzoites of the RH strain within human foreskin fibroblasts. HMR 3004 demonstrated some toxicity for host cells after they were exposed to 5 microg of the drug per ml for 72 h. In contrast, HMR 3647 did not show any significant toxicity even at concentrations as high as 25 microg/ml. In vivo, both ketolides provided remarkable protection against death in mice lethally infected intraperitoneally with tachyzoites of the RH strain or orally with tissue cysts of the C56 strain of T. gondii. A dosage of 100 mg of HMR 3647 per kg of body weight per day administered for 10 days protected 50% of mice infected with tachyzoites. The same dosage of HMR 3004 protected 100% of the mice. In mice infected with cysts, a dosage of 30 mg of HMR 3647 per kg per day protected 100% of the mice, whereas a dosage of 40 mg of HMR 3004 per kg per day protected 75% of the mice. These results demonstrate that HMR 3647 and HMR 3004 possess excellent activities against two different strains of T. gondii and may be useful for the treatment of toxoplasmosis in humans.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Jixu Li ◽  
Huanping Guo ◽  
Eloiza May Galon ◽  
Yang Gao ◽  
Seung-Hun Lee ◽  
...  

ABSTRACT Toxoplasma gondii is an obligate intracellular protozoan parasite and a successful parasitic pathogen in diverse organisms and host cell types. Hydroxylamine (HYD) and carboxymethoxylamine (CAR) have been reported as inhibitors of aspartate aminotransferases (AATs) and interfere with the proliferation in Plasmodium falciparum. Therefore, AATs are suggested as drug targets against Plasmodium. The T. gondii genome encodes only one predicted AAT in both T. gondii type I strain RH and type II strain PLK. However, the effects of HYD and CAR, as well as their relationship with AAT, on T. gondii remain unclear. In this study, we found that HYD and CAR impaired the lytic cycle of T. gondii in vitro, including the inhibition of invasion or reinvasion, intracellular replication, and egress. Importantly, HYD and CAR could control acute toxoplasmosis in vivo. Further studies showed that HYD and CAR could inhibit the transamination activity of rTgAAT in vitro. However, our results confirmed that deficiency of AAT in both RH and PLK did not reduce the virulence in mice, although the growth ability of the parasites was affected in vitro. HYD and CAR could still inhibit the growth of AAT-deficient parasites. These findings indicated that HYD and CAR inhibition of T. gondii growth and control of toxoplasmosis can occur in an AAT-independent pathway. Overall, further studies focusing on the elucidation of the mechanism of inhibition are warranted. Our study hints at new substrates of HYD and CAR as potential drug targets to inhibit T. gondii growth.


Parasitology ◽  
1999 ◽  
Vol 119 (3) ◽  
pp. 259-265 ◽  
Author(s):  
D. J. P. FERGUSON ◽  
D. JACOBS ◽  
E. SAMAN ◽  
J-F. DUBREMETZ ◽  
S. E. WRIGHT

The in vivo expression and distribution of the dense granule protein GRA7 was examined in both the exoenteric (tachyzoite and bradyzoite) and enteric (coccidian) forms of Toxoplasma gondii by immunocytochemistry. There was strong staining of GRA7 in granules within all the infectious stages (tachyzoite, bradyzoite, merozoite and sporozoite). During tachyzoite development, GRA7 was secreted and was associated with the parasitophorous vacuole. In contrast, although there was staining of granules within the bradyzoites of more mature cysts, there appeared to be little staining of the tissue cyst wall or host cell. The apparent stage-specific variation in secretion of GRA7 between tachyzoites and bradyzoites was confirmed by double labelling using stage-specific markers (SAG1 and BAG1). In the enteric forms in the cat gut there was strong labelling of the PV containing early asexual and sexual stages and staining of a few granules in the apical cytoplasm of the merozoite. The positive enteric staining pattern differentiates GRA7 from the other GRA proteins (GRA1–6) which were absent in the merozoites and enteric stages. The staining pattern of GRA7 with strong staining during tachyzoite and enteric development and reduced staining in the tissue cysts is similar to that seen for NTPases. The function of GRA7 is unknown but it is unique among the dense granule proteins in being expressed in all the infectious forms of T. gondii which would point to a basic role in the vacuolar adaptations required for active parasite development.


1988 ◽  
Vol 252 (1) ◽  
pp. 301-304 ◽  
Author(s):  
W H Baricos ◽  
Y Zhou ◽  
R W Mason ◽  
A J Barrett

Cathepsins B and L were purified from human kidney. SDS/polyacrylamide-gel electrophoresis demonstrated that cathepsins B and L, Mr 27000-30000, consist of disulphide-linked dimers, subunit Mr values 22000-25000 and 5000-7000. The pH optimum for the hydrolysis of methylcoumarylamide (-NHMec) substrates (see below) is approx. 6.0 for each enzyme. Km and kcat. are 252 microM and 364s-1 and 2.2 microM and 25.8 s-1 for the hydrolysis of Z-Phe-Arg-NHMec (where Z- represents benzyloxycarbonyl-) by cathepsins B and L respectively, and 184 microM and 158 s-1 for the hydrolysis of Z-Arg-Arg-NHMec by cathepsin B. A 10 min preincubation of cathepsin B (40 degrees C) or cathepsin L (30 degrees C) with E-64 (2.5 microM) results in complete inhibition. Under identical conditions Z-Phe-Phe-CHN2 (0.56 microM) completely inhibits cathepsin L but has little effect on cathepsin B. Incubation of glomerular basement membrane (GBM) with purified human kidney cathepsin L resulted in dose-dependent (10-40 nM) GBM degradation. In contrast, little degradation of GBM (less than 4.0%) was observed with cathepsin B. The pH optimum for GBM degradation by cathepsin L was 3.5. Cathepsin L was significantly more active in degrading GBM than was pancreatic elastase, trypsin or bacterial collagenase. These data suggest that cathepsin L may participate in the lysosomal degradation of GBM associated with normal GBM turnover in vivo.


2008 ◽  
Vol 7 (4) ◽  
pp. 684-697 ◽  
Author(s):  
Carlos Mendoza-Palomares ◽  
Nicolas Biteau ◽  
Christiane Giroud ◽  
Virginie Coustou ◽  
Theresa Coetzer ◽  
...  

ABSTRACT Cysteine proteases have been shown to be essential virulence factors and drug targets in trypanosomatids and an attractive antidisease vaccine candidate for Trypanosoma congolense. Here, we describe an important amplification of genes encoding cathepsin B-like proteases unique to T. congolense. More than 13 different genes were identified, whereas only one or two highly homologous genes have been identified in other trypanosomatids. These proteases grouped into three evolutionary clusters: TcoCBc1 to TcoCBc5 and TcoCBc6, which possess the classical catalytic triad (Cys, His, and Asn), and TcoCBs7 to TcoCBs13, which contains an unusual catalytic site (Ser, Xaa, and Asn). Expression profiles showed that members of the TcoCBc1 to TcoCBc5 and the TcoCBs7 to TcoCBs13 groups are expressed mainly in bloodstream forms and localize in the lysosomal compartment. The expression of recombinant representatives of each group (TcoCB1, TcoCB6, and TcoCB12) as proenzymes showed that TcoCBc1 and TcoCBc6 are able to autocatalyze their maturation 21 and 31 residues, respectively, upstream of the predicted start of the catalytic domain. Both displayed a carboxydipeptidase function, while only TcoCBc1 behaved as an endopeptidase. TcoCBc1 exhibited biochemical differences regarding inhibitor sensitivity compared to that of other cathepsin B-like proteases. Recombinant pro-TcoCBs12 did not automature in vitro, and the pepsin-matured enzyme was inactive in tests with cathepsin B fluorogenic substrates. In vivo inhibition studies using CA074Me (a cell-permeable cathepsin B-specific inhibitor) demonstrated that TcoCB are involved in lysosomal protein degradation essential for survival in bloodstream form. Furthermore, TcoCBc1 elicited an important immune response in experimentally infected cattle. We propose this family of proteins as a potential therapeutic target and as a plausible antigen for T. congolense diagnosis.


Sign in / Sign up

Export Citation Format

Share Document