scholarly journals A Receptor-binding Site as Revealed by the Crystal Structure of CfaE, the Colonization Factor Antigen I Fimbrial Adhesin of EnterotoxigenicEscherichia coli

2007 ◽  
Vol 282 (33) ◽  
pp. 23970-23980 ◽  
Author(s):  
Yong-Fu Li ◽  
Steven Poole ◽  
Fatima Rasulova ◽  
Annette L. McVeigh ◽  
Stephen J. Savarino ◽  
...  
Author(s):  
Daming Zhou ◽  
Helen ME Duyvesteyn ◽  
Cheng-Pin Chen ◽  
Chung-Guei Huang ◽  
Ting-Hua Chen ◽  
...  

AbstractThe COVID-19 pandemic has had unprecedented health and economic impact, but currently there are no approved therapies. We have isolated an antibody, EY6A, from a late-stage COVID-19 patient and show it neutralises SARS-CoV-2 and cross-reacts with SARS-CoV-1. EY6A Fab binds tightly (KD of 2 nM) the receptor binding domain (RBD) of the viral Spike glycoprotein and a 2.6Å crystal structure of an RBD/EY6A Fab complex identifies the highly conserved epitope, away from the ACE2 receptor binding site. Residues of this epitope are key to stabilising the pre-fusion Spike. Cryo-EM analyses of the pre-fusion Spike incubated with EY6A Fab reveal a complex of the intact trimer with three Fabs bound and two further multimeric forms comprising destabilized Spike attached to Fab. EY6A binds what is probably a major neutralising epitope, making it a candidate therapeutic for COVID-19.


2019 ◽  
Vol 116 (7) ◽  
pp. 2681-2690 ◽  
Author(s):  
Ruben J. G. Hulswit ◽  
Yifei Lang ◽  
Mark J. G. Bakkers ◽  
Wentao Li ◽  
Zeshi Li ◽  
...  

Human betacoronaviruses OC43 and HKU1 are endemic respiratory pathogens and, while related, originated from independent zoonotic introductions. OC43 is in fact a host-range variant of the species Betacoronavirus-1, and more closely related to bovine coronavirus (BCoV)—its presumptive ancestor—and porcine hemagglutinating encephalomyelitis virus (PHEV). The β1-coronaviruses (β1CoVs) and HKU1 employ glycan-based receptors carrying 9-O-acetylated sialic acid (9-O-Ac-Sia). Receptor binding is mediated by spike protein S, the main determinant of coronavirus host specificity. For BCoV, a crystal structure for the receptor-binding domain S1A is available and for HKU1 a cryoelectron microscopy structure of the complete S ectodomain. However, the location of the receptor-binding site (RBS), arguably the single-most important piece of information, is unknown. Here we solved the 3.0-Å crystal structure of PHEV S1A. We then took a comparative structural analysis approach to map the β1CoV S RBS, using the general design of 9-O-Ac-Sia-binding sites as blueprint, backed-up by automated ligand docking, structure-guided mutagenesis of OC43, BCoV, and PHEV S1A, and infectivity assays with BCoV-S–pseudotyped vesicular stomatitis viruses. The RBS is not exclusive to OC43 and related animal viruses, but is apparently conserved and functional also in HKU1 S1A. The binding affinity of the HKU1 S RBS toward short sialoglycans is significantly lower than that of OC43, which we attribute to differences in local architecture and accessibility, and which may be indicative for differences between the two viruses in receptor fine-specificity. Our findings challenge reports that would map the OC43 RBS elsewhere in S1A and that of HKU1 in domain S1B.


Immunity ◽  
2001 ◽  
Vol 15 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Kristopher Josephson ◽  
Naomi J. Logsdon ◽  
Mark R. Walter

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Jen Chang ◽  
Cheng-Yun Yeh ◽  
Ju-Chien Cheng ◽  
Yu-Qi Huang ◽  
Kai-Cheng Hsu ◽  
...  

AbstractEradicating influenza A virus (IAV) is difficult, due to its genetic drift and reassortment ability. As the infectious cycle is initiated by the influenza glycoprotein, hemagglutinin (HA), which mediates the binding of virions to terminal sialic acids moieties, HA is a tempting target of anti-influenza inhibitors. However, the complexity of the HA structure has prevented delineation of the structural characterization of the HA protein–ligand complex. Our computational strategy efficiently analyzed > 200,000 records of compounds held in the United States National Cancer Institute (NCI) database and identified potential HA inhibitors, by modeling the sialic acid (SA) receptor binding site (RBS) for the HA structure. Our modeling revealed that compound NSC85561 showed significant antiviral activity against the IAV H1N1 strain with EC50 values ranging from 2.31 to 2.53 µM and negligible cytotoxicity (CC50 > 700 µM). Using the NSC85561 compound as the template to generate 12 derivatives, robust bioassay results revealed the strongest antiviral efficacies with NSC47715 and NSC7223. Virtual screening clearly identified three SA receptor binding site inhibitors that were successfully validated in experimental data. Thus, our computational strategy has identified SA receptor binding site inhibitors against HA that show IAV-associated antiviral activity.


Sign in / Sign up

Export Citation Format

Share Document