scholarly journals High-mobility group box 1 links sensing of reactive oxygen species by huntingtin to its nuclear entry

2018 ◽  
Vol 294 (6) ◽  
pp. 1915-1923 ◽  
Author(s):  
Susie Son ◽  
Laura E. Bowie ◽  
Tamara Maiuri ◽  
Claudia L. K. Hung ◽  
Carly R. Desmond ◽  
...  
2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Renjie Sun ◽  
Siqi Sun ◽  
Yikai Zhang ◽  
Yingshan Zhou ◽  
Ying Shan ◽  
...  

ABSTRACT Porcine circovirus type 2 (PCV2) is an important swine pathogen that causes significant economic losses to the pig industry. PCV2 interacts with host cellular factors to regulate its replication. High-mobility-group box 1 (HMGB1) protein, a major nonhistone protein in the nucleus, was recently discovered to participate in viral infections. Here, we demonstrate that nuclear HMGB1 negatively regulated PCV2 replication as shown by overexpression of HMGB1 or blockage of its nucleocytoplasmic translocation with ethyl pyruvate. The B box domain was essential in restricting PCV2 replication. Nuclear HMGB1 restricted PCV2 replication by sequestering the viral genome via binding to the Ori region. However, PCV2 infection induced translocation of HMGB1 from cell nuclei to the cytoplasmic compartment. Elevation of reactive oxygen species (ROS) induced by PCV2 infection was closely associated with cytosolic translocation of nuclear HMGB1. Treatment of PCV2-infected cells with ethyl pyruvate or N-acetylcysteine downregulated PCV2-induced ROS production, suppressed nucleocytoplasmic HMGB1 translocation, and decreased PCV2 replication. Collectively, these findings offer new insight into the mechanism of the PCV2 evasion strategy: PCV2 manages to escape restriction of its replication by nuclear HMGB1 by inducing ROS to trigger the nuclear-to-cytoplasmic translocation of HMGB1. IMPORTANCE Porcine circovirus type 2 (PCV2) is a small DNA virus that depends heavily on host cells for its infection. This study reports the close relationship between subcellular localization of host high-mobility-group box 1 (HMGB1) protein and viral replication during PCV2 infection. Restriction of PCV2 replication by nuclear HMGB1 is the early step of host defense at the host-pathogen interface. PCV2 then upregulates host reactive oxygen species (ROS) to prevent sequestration of its genome by expelling nuclear HMGB1 into the cytosol. It will be interesting to study if a similar evasion strategy is employed by other circoviruses such as beak and feather disease virus, recently discovered PCV3, and geminiviruses in plants. This study also provides insight into the justification and pharmacological basis of antioxidants as an adjunct therapy in PCV2 infection or possibly other diseases caused by the viruses that deploy the ROS-HMGB1 interaction favoring their replication.


2007 ◽  
Vol 204 (12) ◽  
pp. 2913-2923 ◽  
Author(s):  
Allan Tsung ◽  
John R. Klune ◽  
Xianghong Zhang ◽  
Geetha Jeyabalan ◽  
Zongxian Cao ◽  
...  

Ischemic tissues require mechanisms to alert the immune system of impending cell damage. The nuclear protein high-mobility group box 1 (HMGB1) can activate inflammatory pathways when released from ischemic cells. We elucidate the mechanism by which HMGB1, one of the key alarm molecules released during liver ischemia/reperfusion (I/R), is mobilized in response to hypoxia. HMGB1 release from cultured hepatocytes was found to be an active process regulated by reactive oxygen species (ROS). Optimal production of ROS and subsequent HMGB1 release by hypoxic hepatocytes required intact Toll-like receptor (TLR) 4 signaling. To elucidate the downstream signaling pathways involved in hypoxia-induced HMGB1 release from hepatocytes, we examined the role of calcium signaling in this process. HMGB1 release induced by oxidative stress was markedly reduced by inhibition of calcium/calmodulin-dependent kinases (CaMKs), a family of proteins involved in a wide range of calcium-linked signaling events. In addition, CaMK inhibition substantially decreased liver damage after I/R and resulted in accumulation of HMGB1 in the cytoplasm of hepatocytes. Collectively, these results demonstrate that hypoxia-induced HMGB1 release by hepatocytes is an active, regulated process that occurs through a mechanism promoted by TLR4-dependent ROS production and downstream CaMK-mediated signaling.


2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


Sign in / Sign up

Export Citation Format

Share Document