scholarly journals Expression of murine muscle-enriched A-type lamin-interacting protein (MLIP) is regulated by tissue-specific alternative transcription start sites

2018 ◽  
Vol 293 (51) ◽  
pp. 19761-19770
Author(s):  
Marie-Elodie Cattin ◽  
Shelley A. Deeke ◽  
Sarah A. Dick ◽  
Zachary J. A. Verret-Borsos ◽  
Gayashan Tennakoon ◽  
...  
1998 ◽  
Vol 274 (1) ◽  
pp. H217-H232 ◽  
Author(s):  
Susanne B. Nicholas ◽  
Weidong Yang ◽  
Shwu-Luan Lee ◽  
Hong Zhu ◽  
Kenneth D. Philipson ◽  
...  

Many studies have investigated the regulation of the Na+/Ca2+exchanger, NCX1, but limited data exist on transcriptional regulation of the NCX1 gene. We have identified the transcription start sites of three tissue-specific alternative promoters of NCX1 transcripts from rat heart, kidney, and brain. We have characterized the cardiac NCX1 promoter, from which the most abundant quantities of NCX1 transcripts are expressed. Transfection of primary cardiac myocytes, CHO cells, and COS-7 cells with overlapping genomic DNA fragments spanning the NCX1 cardiac transcription start site has uncovered a cardiac cell-specific minimum promoter from −137 to +85. The cardiac NCX1 promoter is TATA-less but has putative binding sites for cardiac-specific GATA factors, an E box, and an Inr as well as multiple active enhancers. The kidney NCX1 promoter has a typical TATA box and binding sites for several tissue-specific factors. The brain NCX1 promoter is very GC-rich and possesses several Sp-1 binding sites consistent with its ubiquitous expression.


PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0179230 ◽  
Author(s):  
Evgenya Y. Popova ◽  
Anna C. Salzberg ◽  
Chen Yang ◽  
Samuel Shao-Min Zhang ◽  
Colin J. Barnstable

2020 ◽  
Author(s):  
D.E. Goszczynski ◽  
M.M. Halstead ◽  
A.D. Islas-Trejo ◽  
H. Zhou ◽  
P.J. Ross

ABSTRACTCharacterizing transcription start sites is essential for understanding the regulatory mechanisms that control gene expression. Recently, a new bovine genome assembly (ARS-UCD1.2) with high continuity, accuracy, and completeness was released; however, the functional annotation of the bovine genome lacks precise transcription start sites and includes a low number of transcripts in comparison to human and mouse. Using the RAMPAGE approach, this study identified transcription start sites at high resolution in a large collection of bovine tissues. We found several known and novel transcription start sites attributed to promoters of protein coding and lncRNA genes that were validated through experimental and in silico evidence. With these findings, the annotation of transcription start sites in cattle reached a level comparable to the mouse and human genome annotations. In addition, we identified and characterized transcription start sites for antisense transcripts derived from bidirectional promoters, potential lncRNAs, mRNAs, and pre-miRNAs. We also analyzed the quantitative aspects of RAMPAGE data for producing a promoter activity atlas, reaching highly reproducible results comparable to traditional RNA-Seq. Lastly, gene co-expression networks revealed an impressive use of tissue-specific promoters, especially between brain and testicle, which expressed several genes in common from alternate transcription start sites. Regions surrounding co-expressed modules were enriched in binding factor motifs representative of their tissues. This annotation will be highly useful for future studies on expression control in cattle and other species. Furthermore, these data provide significant insight into transcriptional activity for a comprehensive set of tissues.


1991 ◽  
Vol 19 (18) ◽  
pp. 4975-4982 ◽  
Author(s):  
Kristen M. Beck ◽  
Alfred H. Seekamp ◽  
G. Roger Askew ◽  
Zhu Mei ◽  
Catherine M. Farrell ◽  
...  

2008 ◽  
Vol 28 (12) ◽  
pp. 3883-3893 ◽  
Author(s):  
M. Harley Jenks ◽  
Thomas W. O'Rourke ◽  
Daniel Reines

ABSTRACT The IMD2 gene in Saccharomyces cerevisiae is regulated by intracellular guanine nucleotides. Regulation is exerted through the choice of alternative transcription start sites that results in synthesis of either an unstable short transcript terminating upstream of the start codon or a full-length productive IMD2 mRNA. Start site selection is dictated by the intracellular guanine nucleotide levels. Here we have mapped the polyadenylation sites of the upstream, unstable short transcripts that form a heterogeneous family of RNAs of ≈200 nucleotides. The switch from the upstream to downstream start sites required the Rpb9 subunit of RNA polymerase II. The enzyme's ability to locate the downstream initiation site decreased exponentially as the start was moved downstream from the TATA box. This suggests that RNA polymerase II's pincer grip is important as it slides on DNA in search of a start site. Exosome degradation of the upstream transcripts was highly dependent upon the distance between the terminator and promoter. Similarly, termination was dependent upon the Sen1 helicase when close to the promoter. These findings extend the emerging concept that distinct modes of termination by RNA polymerase II exist and that the distance of the terminator from the promoter, as well as its sequence, is important for the pathway chosen.


2016 ◽  
Author(s):  
Yun Chen ◽  
Athma A. Pai ◽  
Jan Herudek ◽  
Michal Lubas ◽  
Nicola Meola ◽  
...  

AbstractMammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation sites, promoters often cluster so that the divergent activity of one might impact another. Here, we find that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT formation, but due to polyadenylation site constraints, these transcripts tend to spread into the neighboring mRNA on the same strand. This mechanism to derive new alternative mRNA transcription start sites (TSSs) is also evident at closely spaced promoters supporting convergent mRNA transcription. We suggest that basic building blocks of divergently transcribed core promoter pairs, in combination with the wealth of TSSs in mammalian genomes, provides a framework with which evolution shapes transcriptomes.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Kasper Thorsen ◽  
Troels Schepeler ◽  
Bodil Øster ◽  
Mads H Rasmussen ◽  
Søren Vang ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Benpeng Miao ◽  
Shuhua Fu ◽  
Cheng Lyu ◽  
Paul Gontarz ◽  
Ting Wang ◽  
...  

Abstract Background Transposable elements (TEs) are a significant component of eukaryotic genomes and play essential roles in genome evolution. Mounting evidence indicates that TEs are highly transcribed in early embryo development and contribute to distinct biological functions and tissue morphology. Results We examine the epigenetic dynamics of mouse TEs during the development of five tissues: intestine, liver, lung, stomach, and kidney. We found that TEs are associated with over 20% of open chromatin regions during development. Close to half of these accessible TEs are only activated in a single tissue and a specific developmental stage. Most accessible TEs are rodent-specific. Across these five tissues, 453 accessible TEs are found to create the transcription start sites of downstream genes in mouse, including 117 protein-coding genes and 144 lincRNA genes, 93.7% of which are mouse-specific. Species-specific TE-derived transcription start sites are found to drive the expression of tissue-specific genes and change their tissue-specific expression patterns during evolution. Conclusion Our results suggest that TE insertions increase the regulatory potential of the genome, and some TEs have been domesticated to become a crucial component of gene and regulate tissue-specific expression during mouse tissue development.


Sign in / Sign up

Export Citation Format

Share Document