scholarly journals Receptor recognition by the peroxisomal AAA complex depends on the presence of the ubiquitin moiety and is mediated by Pex1p

2018 ◽  
Vol 293 (40) ◽  
pp. 15458-15470 ◽  
Author(s):  
Daniel Schwerter ◽  
Immanuel Grimm ◽  
Wolfgang Girzalsky ◽  
Ralf Erdmann
1992 ◽  
Vol 68 (06) ◽  
pp. 694-700 ◽  
Author(s):  
Roy R Hantgan ◽  
Silvia C Endenburg ◽  
I Cavero ◽  
Gérard Marguerie ◽  
André Uzan ◽  
...  

SummaryWe have employed synthetic peptides with sequences corresponding to the integrin receptor-recognition regions of fibrinogen as inhibitors of platelet aggregation and adhesion to fibrinogen-and fibrin-coated surfaces in flowing whole blood, using a rectangular perfusion chamber at wall shear rates of 300 s–1 and 1,300 s–1. D-RGDW caused substantial inhibition of platelet aggregation and adhesion to fibrinogen and fibrin at both shear rates, although it was least effective at blocking platelet adhesion to fibrin at 300 s–1. RGDS was a weaker inhibitor, and produced a biphasic dose-response curve; SDRG was inactive. HHLGGAK-QAGDV partially inhibited platelet aggregation and adhesion to fibrin(ogen) at both shear rates. These results support the identification of an RGD-specific receptor, most likely the platelet integrin glycoprotein IIb: III a, as the primary receptor responsible for platelet: fibrin(ogen) adhesive interactions under flow conditions, and indicate that platelet adhesion to surface bound fibrin(ogen) is stabilized by multivalent receptor-ligand contacts.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8718-8729
Author(s):  
Jixue Sun ◽  
Meijiang Liu ◽  
Na Yang

The origin of SARS-CoV-2 through structural analysis of receptor recognition was investigated by molecular dynamics simulations.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kanagasabai Balamurugan ◽  
Linda Koehler ◽  
Jan-Niklas Dürig ◽  
Ute Hempel ◽  
Jörg Rademann ◽  
...  

Abstract Angiogenesis is an important physiological process playing a crucial role in wound healing and cancer progression. Vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) are key players in angiogenesis. Based on previous findings regarding the modulation of VEGF activity by glycosaminoglycans (GAG), here we explore the interaction of hyaluronan (HA)-based GAG with PDGF and its receptor PDGFR-β by applying molecular modeling and dynamics simulations in combination with surface plasmon resonance (SPR). Computational analysis on the interaction of oligo-hyaluronan derivatives with different sulfation pattern and functionalization shows that these GAG interact with PDGF in relevant regions for receptor recognition, and that high sulfation as well as modification with the TAMRA group convey stronger binding. On the other hand, the studied oligo-hyaluronan derivatives are predicted to scarcely recognize PDGFR-β. SPR results are in line with the computational predictions regarding the binding pattern of HA tetrasaccharide (HA4) derivatives to PDGF and PDGFR-β. Furthermore, our experimental results also show that the complexation of PDGF to PDGFR-β can be modulated by HA4 derivatives. The results found open the path for considering HA4 derivatives as potential candidates to be exploited for modulation of the PDGF/PDGFR-β signaling system in angiogenesis and related disease conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
François Stüder ◽  
Jean-Louis Petit ◽  
Stefan Engelen ◽  
Marco Antonio Mendoza-Parra

AbstractSince December 2019, a novel coronavirus responsible for a severe acute respiratory syndrome (SARS-CoV-2) is accountable for a major pandemic situation. The emergence of the B.1.1.7 strain, as a highly transmissible variant has accelerated the world-wide interest in tracking SARS-CoV-2 variants’ occurrence. Similarly, other extremely infectious variants, were described and further others are expected to be discovered due to the long period of time on which the pandemic situation is lasting. All described SARS-CoV-2 variants present several mutations within the gene encoding the Spike protein, involved in host receptor recognition and entry into the cell. Hence, instead of sequencing the whole viral genome for variants’ tracking, herein we propose to focus on the SPIKE region to increase the number of candidate samples to screen at once; an essential aspect to accelerate diagnostics, but also variants’ emergence/progression surveillance. This proof of concept study accomplishes both at once, population-scale diagnostics and variants' tracking. This strategy relies on (1) the use of the portable MinION DNA sequencer; (2) a DNA barcoding and a SPIKE gene-centered variant’s tracking, increasing the number of candidates per assay; and (3) a real-time diagnostics and variant’s tracking monitoring thanks to our software RETIVAD. This strategy represents an optimal solution for addressing the current needs on SARS-CoV-2 progression surveillance, notably due to its affordable implementation, allowing its implantation even in remote places over the world.


Sign in / Sign up

Export Citation Format

Share Document