scholarly journals Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein–coupled receptor and TMEM16 scramblases

2018 ◽  
Vol 293 (47) ◽  
pp. 18318-18327 ◽  
Author(s):  
Lei Wang ◽  
Yugo Iwasaki ◽  
Kiran K. Andra ◽  
Kalpana Pandey ◽  
Anant K. Menon ◽  
...  

Members of the G protein–coupled receptor and TMEM16 (transmembrane protein 16) protein families are phospholipid scramblases that facilitate rapid, bidirectional movement of phospholipids across a membrane bilayer in an ATP-independent manner. On reconstitution into large unilamellar vesicles, these proteins scramble more than 10,000 lipids/protein/s as measured with co-reconstituted fluorescent nitrobenzoxadiazole (NBD)-labeled phospholipids. Although NBD-labeled phospholipids are ubiquitously used as reporters of scramblase activity, it remains unclear whether the NBD modification influences the quantitative outcomes of the scramblase assay. We now report a refined biochemical approach for measuring the activity of scramblase proteins with radiolabeled natural phosphatidylinositol ([3H]PI) and exploiting the hydrolytic activity of bacterial PI-specific phospholipase C (PI-PLC) to detect the transbilayer movement of PI. PI-PLC rapidly hydrolyzed 50% of [3H]PI in large symmetric, unilamellar liposomes, corresponding to the lipid pool in the outer leaflet. On reconstitution of a crude preparation of yeast endoplasmic reticulum scramblase, purified bovine opsin, or purified Nectria haematococca TMEM16, the extent of [3H]PI hydrolysis increased, indicating that [3H]PI from the inner leaflet had been scrambled to the outer leaflet. Using transphosphatidylation, we synthesized acyl-NBD-PI and used it to compare our PI-PLC–based assay with conventional fluorescence-based methods. Our results revealed quantitative differences between the two assays that we attribute to the specific features of the assays themselves rather than to the nature of the phospholipid. In summary, we have developed an assay that measures scrambling of a chemically unmodified phospholipid by a reconstituted scramblase.

2012 ◽  
Vol 385 (9) ◽  
pp. 945-948 ◽  
Author(s):  
Young Mi Seok ◽  
Eun Jin Jang ◽  
Oliver Reiser ◽  
Markus Hager ◽  
In Kyeom Kim

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1433
Author(s):  
Lina A. Huang ◽  
Kelly X. Huang ◽  
Jui Tu ◽  
Fouad Kandeel ◽  
Junfeng Li

Diabetes remains one of the fastest growing chronic diseases and is a leading source of morbidity and accelerated mortality in the world. Loss of beta cell mass (BCM) and decreased sensitivity to insulin underlie diabetes pathogenesis. Yet, the ability to safely and directly assess BCM in individuals with diabetes does not exist. Measures such as blood glucose provide only a crude indirect picture of beta cell health. PET imaging could, in theory, allow for safe, direct, and precise characterization of BCM. However, identification of beta cell-specific radiolabeled tracers remains elusive. G-protein coupled receptor 44 (GPR44) is a transmembrane protein that was characterized in 2012 as highly beta cell-specific within the insulin-positive islets of Langerhans. Accordingly, radiolabeling of existing GPR44 antagonists could be a viable method to accelerate PET tracer development. The present study aims to evaluate and summarize published analogues of the GPR44 antagonist ramatroban to develop 18F-labeled PET tracers for BCM analysis. The 77 corresponding ramatroban analogues containing a fluorine nuclide were characterized for properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile, and 32 compounds with favorable properties were identified. This review illustrates the potential of GPR44 analogues for the development of PET tracers.


2014 ◽  
Vol 111 (10) ◽  
pp. 3745-3750 ◽  
Author(s):  
Noumeira Hamoud ◽  
Viviane Tran ◽  
Louis-Philippe Croteau ◽  
Artur Kania ◽  
Jean-François Côté

Muscle fibers form as a result of myoblast fusion, yet the cell surface receptors regulating this process are unknown in vertebrates. In Drosophila, myoblast fusion involves the activation of the Rac pathway by the guanine nucleotide exchange factor Myoblast City and its scaffolding protein ELMO, downstream of cell-surface cell-adhesion receptors. We previously showed that the mammalian ortholog of Myoblast City, DOCK1, functions in an evolutionarily conserved manner to promote myoblast fusion in mice. In search for regulators of myoblast fusion, we identified the G-protein coupled receptor brain-specific angiogenesis inhibitor (BAI3) as a cell surface protein that interacts with ELMO. In cultured cells, BAI3 or ELMO1/2 loss of function severely impaired myoblast fusion without affecting differentiation and cannot be rescued by reexpression of BAI3 mutants deficient in ELMO binding. The related BAI protein family member, BAI1, is functionally distinct from BAI3, because it cannot rescue the myoblast fusion defects caused by the loss of BAI3 function. Finally, embryonic muscle precursor expression of a BAI3 mutant unable to bind ELMO was sufficient to block myoblast fusion in vivo. Collectively, our findings provide a role for BAI3 in the relay of extracellular fusion signals to their intracellular effectors, identifying it as an essential transmembrane protein for embryonic vertebrate myoblast fusion.


Biochemistry ◽  
2003 ◽  
Vol 42 (42) ◽  
pp. 12181-12191 ◽  
Author(s):  
Meryem Bektas ◽  
Larry S. Barak ◽  
Puneet S. Jolly ◽  
Hong Liu ◽  
Kevin R. Lynch ◽  
...  

2020 ◽  
Author(s):  
Debbie C. Crans ◽  
Duaa Althumairy ◽  
Heide Murakami ◽  
B. George Barisas ◽  
Deborah Roess

Sign in / Sign up

Export Citation Format

Share Document