scholarly journals Phase-separated condensate-aided enrichment of biomolecular interactions for high-throughput drug screening in test tubes

2020 ◽  
Vol 295 (33) ◽  
pp. 11420-11434 ◽  
Author(s):  
Min Zhou ◽  
Weiping Li ◽  
Jian Li ◽  
Leiming Xie ◽  
Rongbo Wu ◽  
...  

Modification-dependent and -independent biomolecular interactions, including protein–protein, protein–DNA/RNA, protein–sugar, and protein–lipid interactions, play crucial roles in all cellular processes. Dysregulation of these biomolecular interactions or malfunction of the associated enzymes results in various diseases; therefore, these interactions and enzymes are attractive targets for therapies. High-throughput screening can greatly facilitate the discovery of drugs for these targets. Here, we describe a biomolecular interaction detection method, called phase-separated condensate-aided enrichment of biomolecular interactions in test tubes (CEBIT). The readout of CEBIT is the selective recruitment of biomolecules into phase-separated condensates harboring their cognate binding partners. We tailored CEBIT to detect various biomolecular interactions and activities of biomolecule-modifying enzymes. Using CEBIT-based high-throughput screening assays, we identified known inhibitors of the p53/MDM2 (MDM2) interaction and of the histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1), from a compound library. CEBIT is simple and versatile, and is likely to become a powerful tool for drug discovery and basic biomedical research.

2020 ◽  
Author(s):  
Min Zhou ◽  
Weiping Li ◽  
Jian Li ◽  
Leiming Xie ◽  
Rongbo Wu ◽  
...  

AbstractModification-dependent and -independent biomolecular interactions (BIs), including protein-protein, protein-DNA/RNA and protein-lipid, play crucial roles in all cellular processes. Dysregulation of BIs or malfunction of the associated enzymes results in various diseases, thus they are attractive targets for therapies. High-throughput screening (HTS) can greatly facilitate the discovery of drugs for these targets. Here we describe a HTS drug discovery method, called compartmentalization of enhanced biomolecular interactions in test tubes (CEBIT). CEBIT uses selective recruitment of biomolecules into phase separated compartments harboring their cognate binding partners as readouts. CEBIT were tailored to detect various BIs and associated modifying enzymes. Using CEBIT-based HTS assays, we successfully identified known inhibitors of the p53/MDM2 interaction and of SUV39H1 from a compound library. CEBIT is simple and versatile, and is likely to become a powerful tool for drug discovery and basic biomedical research.


2016 ◽  
Vol 113 (52) ◽  
pp. 14915-14920 ◽  
Author(s):  
Yih Yang Chen ◽  
Pamuditha N. Silva ◽  
Abdullah Muhammad Syed ◽  
Shrey Sindhwani ◽  
Jonathan V. Rocheleau ◽  
...  

On-chip imaging of intact three-dimensional tissues within microfluidic devices is fundamentally hindered by intratissue optical scattering, which impedes their use as tissue models for high-throughput screening assays. Here, we engineered a microfluidic system that preserves and converts tissues into optically transparent structures in less than 1 d, which is 20× faster than current passive clearing approaches. Accelerated clearing was achieved because the microfluidic system enhanced the exchange of interstitial fluids by 567-fold, which increased the rate of removal of optically scattering lipid molecules from the cross-linked tissue. Our enhanced clearing process allowed us to fluorescently image and map the segregation and compartmentalization of different cells during the formation of tumor spheroids, and to track the degradation of vasculature over time within extracted murine pancreatic islets in static culture, which may have implications on the efficacy of beta-cell transplantation treatments for type 1 diabetes. We further developed an image analysis algorithm that automates the analysis of the vasculature connectivity, volume, and cellular spatial distribution of the intact tissue. Our technique allows whole tissue analysis in microfluidic systems, and has implications in the development of organ-on-a-chip systems, high-throughput drug screening devices, and in regenerative medicine.


2015 ◽  
Vol 17 (4) ◽  
pp. 239-246 ◽  
Author(s):  
Aileen Y. Alontaga ◽  
Yifei Li ◽  
Chih-Hong Chen ◽  
Chen-Ting Ma ◽  
Siobhan Malany ◽  
...  

Biopolymers ◽  
2014 ◽  
Vol 102 (5) ◽  
pp. 396-406 ◽  
Author(s):  
Franck Madoux ◽  
Claudia Tredup ◽  
Timothy P. Spicer ◽  
Louis Scampavia ◽  
Peter S. Chase ◽  
...  

2006 ◽  
Vol 50 (4) ◽  
pp. 1586-1589 ◽  
Author(s):  
Audrey Gego ◽  
Olivier Silvie ◽  
Jean-François Franetich ◽  
Khemaïs Farhati ◽  
Laurent Hannoun ◽  
...  

ABSTRACT Plasmodium liver stages represent potential targets for antimalarial prophylactic drugs. Nevertheless, there is a lack of molecules active on these stages. We have now developed a new approach for the high-throughput screening of drug activity on Plasmodium liver stages in vitro, based on an infrared fluorescence scanning system. This method allowed us to count automatically and rapidly Plasmodium-infected hepatocytes, using different hepatic cells and different Plasmodium species, including Plasmodium falciparum. This new technique is well adapted for high-throughput drug screening and should facilitate the identification of new antimalarial compounds active on Plasmodium liver stages.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 841 ◽  
Author(s):  
Caitlin Lynch ◽  
Jinghua Zhao ◽  
Srilatha Sakamuru ◽  
Li Zhang ◽  
Ruili Huang ◽  
...  

The nuclear receptor, estrogen-related receptor alpha (ERRα; NR3B1), plays a pivotal role in energy homeostasis. Its expression fluctuates with the demands of energy production in various tissues. When paired with the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the PGC/ERR pathway regulates a host of genes that participate in metabolic signaling networks and in mitochondrial oxidative respiration. Unregulated overexpression of ERRα is found in many cancer cells, implicating a role in cancer progression and other metabolism-related diseases. Using high throughput screening assays, we screened the Tox21 10K compound library in stably transfected HEK293 cells containing either the ERRα-reporter or the reporter plus PGC-1α expression plasmid. We identified two groups of antagonists that were potent inhibitors of ERRα activity and/or the PGC/ERR pathway: nine antineoplastic agents and thirteen pesticides. Results were confirmed using gene expression studies. These findings suggest a novel mechanism of action on bioenergetics for five of the nine antineoplastic drugs. Nine of the thirteen pesticides, which have not been investigated previously for ERRα disrupting activity, were classified as such. In conclusion, we demonstrated that high-throughput screening assays can be used to reveal new biological properties of therapeutic and environmental chemicals, broadening our understanding of their modes of action.


Sign in / Sign up

Export Citation Format

Share Document