scholarly journals Actin-binding compounds, previously discovered by FRET-based high-throughput screening, differentially affect skeletal and cardiac muscle

2020 ◽  
Vol 295 (41) ◽  
pp. 14100-14110 ◽  
Author(s):  
Piyali Guhathakurta ◽  
Lien A. Phung ◽  
Ewa Prochniewicz ◽  
Sarah Lichtenberger ◽  
Anna Wilson ◽  
...  

Actin's interactions with myosin and other actin-binding proteins are essential for cellular viability in numerous cell types, including muscle. In a previous high-throughput time-resolved FRET (TR-FRET) screen, we identified a class of compounds that bind to actin and affect actomyosin structure and function. For clinical utility, it is highly desirable to identify compounds that affect skeletal and cardiac muscle differently. Because actin is more highly conserved than myosin and most other muscle proteins, most such efforts have not targeted actin. Nevertheless, in the current study, we tested the specificity of the previously discovered actin-binding compounds for effects on skeletal and cardiac α-actins as well as on skeletal and cardiac myofibrils. We found that a majority of these compounds affected the transition of monomeric G-actin to filamentous F-actin, and that several of these effects were different for skeletal and cardiac actin isoforms. We also found that several of these compounds affected ATPase activity differently in skeletal and cardiac myofibrils. We conclude that these structural and biochemical assays can be used to identify actin-binding compounds that differentially affect skeletal and cardiac muscles. The results of this study set the stage for screening of large chemical libraries for discovery of novel compounds that act therapeutically and specifically on cardiac or skeletal muscle.

2018 ◽  
Vol 114 (3) ◽  
pp. 37a ◽  
Author(s):  
Piyali Guhathakurta ◽  
Ewa Prochniewicz ◽  
Kurt C. Peterson ◽  
Benjamin D. Grant ◽  
Gregory D. Gillispie ◽  
...  

2020 ◽  
Vol 118 (3) ◽  
pp. 593a-594a
Author(s):  
Piyali Guhathakurta ◽  
Lien Phung ◽  
Sarah Lichtenberger ◽  
Ewa Prochniewicz ◽  
David D. Thomas

Author(s):  
Piyali Guhathakurta ◽  
Lien A. Phung ◽  
Ewa Prochniewicz ◽  
Sarah Lichtenberger ◽  
Anna Wilson ◽  
...  

AbstractWe have used spectroscopic and functional assays to evaluate the effects of a group of actin-binding compounds on striated muscle protein structure and function. Actin is present in every human cell, and its interaction with multiple myosin isoforms and multiple actin-binding proteins is essential for cellular viability. A previous high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) assay from our group identified a class of compounds that bind to actin and affect actomyosin structure and function. In the current study, we tested their effects on the two isoforms of striated muscle α-actins, skeletal and cardiac. We found that a majority of these compounds affected the transition of monomeric G-actin to filamentous F-actin, and that these effects were different for the two actin isoforms, suggesting a different mode of action. To determine the effects of these compounds on sarcomeric function, we further tested their activity on skeletal and cardiac myofibrils. We found that several compounds affected ATPase activity of skeletal and cardiac myofibrils differently, suggesting different mechanisms of action of these compounds for the two muscle types. We conclude that these structural and biochemical assays can be used to identify actin-binding compounds that differentially affect skeletal and cardiac muscles. The results of this study set the stage for screening of large chemical libraries for discovery of novel compounds that act therapeutically and specifically on cardiac or skeletal muscle.


2018 ◽  
Vol 293 (31) ◽  
pp. 12288-12298 ◽  
Author(s):  
Piyali Guhathakurta ◽  
Ewa Prochniewicz ◽  
Benjamin D. Grant ◽  
Kurt C. Peterson ◽  
David D. Thomas

ACS Sensors ◽  
2020 ◽  
Author(s):  
Ke-Jia Wu ◽  
Chun Wu ◽  
Feng Chen ◽  
Sha-Sha Cheng ◽  
Dik-Lung Ma ◽  
...  

2021 ◽  
pp. 247255522110262
Author(s):  
Jonathan Choy ◽  
Yanqing Kan ◽  
Steve Cifelli ◽  
Josephine Johnson ◽  
Michelle Chen ◽  
...  

High-throughput phenotypic screening is a key driver for the identification of novel chemical matter in drug discovery for challenging targets, especially for those with an unclear mechanism of pathology. For toxic or gain-of-function proteins, small-molecule suppressors are a targeting/therapeutic strategy that has been successfully applied. As with other high-throughput screens, the screening strategy and proper assays are critical for successfully identifying selective suppressors of the target of interest. We executed a small-molecule suppressor screen to identify compounds that specifically reduce apolipoprotein L1 (APOL1) protein levels, a genetically validated target associated with increased risk of chronic kidney disease. To enable this study, we developed homogeneous time-resolved fluorescence (HTRF) assays to measure intracellular APOL1 and apolipoprotein L2 (APOL2) protein levels and miniaturized them to 1536-well format. The APOL1 HTRF assay served as the primary assay, and the APOL2 and a commercially available p53 HTRF assay were applied as counterscreens. Cell viability was also measured with CellTiter-Glo to assess the cytotoxicity of compounds. From a 310,000-compound screening library, we identified 1490 confirmed primary hits with 12 different profiles. One hundred fifty-three hits selectively reduced APOL1 in 786-O, a renal cell adenocarcinoma cell line. Thirty-one of these selective suppressors also reduced APOL1 levels in conditionally immortalized human podocytes. The activity and specificity of seven resynthesized compounds were validated in both 786-O and podocytes.


2021 ◽  
pp. 247255522110383
Author(s):  
Gurmeet Kaur ◽  
David M. Evans ◽  
Beverly A. Teicher ◽  
Nathan P. Coussens

Malignant tumors are complex tissues composed of malignant cells, vascular cells, structural mesenchymal cells including pericytes and carcinoma-associated fibroblasts, infiltrating immune cells, and others, collectively called the tumor stroma. The number of stromal cells in a tumor is often much greater than the number of malignant cells. The physical associations among all these cell types are critical to tumor growth, survival, and response to therapy. Most cell-based screens for cancer drug discovery and precision medicine validation use malignant cells in isolation as monolayers, embedded in a matrix, or as spheroids in suspension. Medium- and high-throughput screening with multiple cell lines requires a scalable, reproducible, robust cell-based assay. Complex spheroids include malignant cells and two normal cell types, human umbilical vein endothelial cells and highly plastic mesenchymal stem cells, which rapidly adapt to the malignant cell microenvironment. The patient-derived pancreatic adenocarcinoma cell line, K24384-001-R, was used to explore complex spheroid structure and response to anticancer agents in a 96-well format. We describe the development of the complex spheroid assay as well as the growth and structure of complex spheroids over time. Subsequently, we demonstrate successful assay miniaturization to a 384-well format and robust performance in a high-throughput screen. Implementation of the complex spheroid assay was further demonstrated with 10 well-established pancreatic cell lines. By incorporating both human stromal and tumor components, complex spheroids might provide an improved model for tumor response in vivo.


2017 ◽  
Vol 112 (3) ◽  
pp. 237a
Author(s):  
Piyali Guhathakurta ◽  
Ewa Prochniewicz ◽  
Kurt C. Peterson ◽  
Benjamin D. Grant ◽  
Gregory D. Gillispie ◽  
...  

2018 ◽  
Vol 23 (9) ◽  
pp. 974-981
Author(s):  
Yu-Chi Juang ◽  
Xavier Fradera ◽  
Yongxin Han ◽  
Anthony William Partridge

Histidine decarboxylase (HDC) is the primary enzyme that catalyzes the conversion of histidine to histamine. HDC contributes to many physiological responses as histamine plays important roles in allergic reaction, neurological response, gastric acid secretion, and cell proliferation and differentiation. Small-molecule modulation of HDC represents a potential therapeutic strategy for a range of histamine-associated diseases, including inflammatory disease, neurological disorders, gastric ulcers, and select cancers. High-throughput screening (HTS) methods for measuring HDC activity are currently limited. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring HDC activity. The assay is based on competition between HDC-generated histamine and fluorophore-labeled histamine for binding to a Europium cryptate (EuK)-labeled anti-histamine antibody. We demonstrated that the assay is highly sensitive and simple to develop. Assay validation experiments were performed using low-volume 384-well plates and resulted in good statistical parameters. A pilot HTS screen gave a Z′ score > 0.5 and a hit rate of 1.1%, and led to the identification of a validated hit series. Overall, the presented assay should facilitate the discovery of therapeutic HDC inhibitors by acting as a novel tool suitable for large-scale HTS and subsequent interrogation of compound structure–activity relationships.


Sign in / Sign up

Export Citation Format

Share Document