scholarly journals Actin-Binding Compounds, Discovered from Fret-Based High-Throughput Screening, Differentially Affect Skeletal and Cardiac Muscle

2020 ◽  
Vol 118 (3) ◽  
pp. 593a-594a
Author(s):  
Piyali Guhathakurta ◽  
Lien Phung ◽  
Sarah Lichtenberger ◽  
Ewa Prochniewicz ◽  
David D. Thomas
2020 ◽  
Vol 295 (41) ◽  
pp. 14100-14110 ◽  
Author(s):  
Piyali Guhathakurta ◽  
Lien A. Phung ◽  
Ewa Prochniewicz ◽  
Sarah Lichtenberger ◽  
Anna Wilson ◽  
...  

Actin's interactions with myosin and other actin-binding proteins are essential for cellular viability in numerous cell types, including muscle. In a previous high-throughput time-resolved FRET (TR-FRET) screen, we identified a class of compounds that bind to actin and affect actomyosin structure and function. For clinical utility, it is highly desirable to identify compounds that affect skeletal and cardiac muscle differently. Because actin is more highly conserved than myosin and most other muscle proteins, most such efforts have not targeted actin. Nevertheless, in the current study, we tested the specificity of the previously discovered actin-binding compounds for effects on skeletal and cardiac α-actins as well as on skeletal and cardiac myofibrils. We found that a majority of these compounds affected the transition of monomeric G-actin to filamentous F-actin, and that several of these effects were different for skeletal and cardiac actin isoforms. We also found that several of these compounds affected ATPase activity differently in skeletal and cardiac myofibrils. We conclude that these structural and biochemical assays can be used to identify actin-binding compounds that differentially affect skeletal and cardiac muscles. The results of this study set the stage for screening of large chemical libraries for discovery of novel compounds that act therapeutically and specifically on cardiac or skeletal muscle.


Author(s):  
Piyali Guhathakurta ◽  
Lien A. Phung ◽  
Ewa Prochniewicz ◽  
Sarah Lichtenberger ◽  
Anna Wilson ◽  
...  

AbstractWe have used spectroscopic and functional assays to evaluate the effects of a group of actin-binding compounds on striated muscle protein structure and function. Actin is present in every human cell, and its interaction with multiple myosin isoforms and multiple actin-binding proteins is essential for cellular viability. A previous high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) assay from our group identified a class of compounds that bind to actin and affect actomyosin structure and function. In the current study, we tested their effects on the two isoforms of striated muscle α-actins, skeletal and cardiac. We found that a majority of these compounds affected the transition of monomeric G-actin to filamentous F-actin, and that these effects were different for the two actin isoforms, suggesting a different mode of action. To determine the effects of these compounds on sarcomeric function, we further tested their activity on skeletal and cardiac myofibrils. We found that several compounds affected ATPase activity of skeletal and cardiac myofibrils differently, suggesting different mechanisms of action of these compounds for the two muscle types. We conclude that these structural and biochemical assays can be used to identify actin-binding compounds that differentially affect skeletal and cardiac muscles. The results of this study set the stage for screening of large chemical libraries for discovery of novel compounds that act therapeutically and specifically on cardiac or skeletal muscle.


2018 ◽  
Vol 114 (3) ◽  
pp. 37a ◽  
Author(s):  
Piyali Guhathakurta ◽  
Ewa Prochniewicz ◽  
Kurt C. Peterson ◽  
Benjamin D. Grant ◽  
Gregory D. Gillispie ◽  
...  

2020 ◽  
pp. jbc.RA120.015417
Author(s):  
Robyn T. Rebbeck ◽  
Anna K Andrick ◽  
Sarah A Denha ◽  
Bengt Svensson ◽  
Piyali Guhathakurta ◽  
...  

Numerous diseases are linked to mutations in the actin-binding domains (ABDs) of conserved cytoskeletal proteins, including β-III-spectrin, α-actinin, filamin, and dystrophin. A β-III-spectrin ABD mutation (L253P) linked to spinocerebellar ataxia type 5 (SCA5) causes a dramatic increase in actin binding. Reducing actin binding of L253P is thus a potential therapeutic approach for SCA5 pathogenesis. Here, we validate a high-throughput screening (HTS) assay to discover potential disrupters of the interaction between the mutant β-III-spectrin ABD and actin in live cells. This assay monitors FRET between fluorescent proteins fused to the mutant ABD and the actin-binding peptide Lifeact, in HEK293-6E cells. Using a specific and high-affinity actin-binding tool compound, swinholide A, we demonstrate HTS compatibility with an excellent Z’-factor of 0.67±0.03. Screening a library of 1280 pharmacologically active compounds in 1536-well plates to determine assay robustness, we demonstrate high reproducibility across plates and across days.  We identified nine Hits that reduced FRET between Lifeact and ABD. Four of those  Hits were found to reduce Lifeact co-sedimentation with actin, thus establishing the potential of our assay for detection of actin-binding modulators. Concurrent to our primary FRET assay, we also developed a high-throughput compatible counter screen to remove undesirable FRET Hits. Using the FRET Hits, we show that our counter screen is sensitive to undesirable compounds that cause cell toxicity or ABD aggregation. Overall, our FRET-based HTS platform sets the stage to screen large compound libraries for modulators of β-III-spectrin, or disease-linked spectrin-related proteins, for therapeutic development.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
L Hingorani ◽  
NP Seeram ◽  
B Ebersole

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
K Georgousaki ◽  
N DePedro ◽  
AM Chinchilla ◽  
N Aliagiannis ◽  
F Vicente ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
LS Espindola ◽  
RG Dusi ◽  
KR Gustafson ◽  
J McMahon ◽  
JA Beutler

2014 ◽  
Author(s):  
Clair Cochrane ◽  
Halil Ruso ◽  
Anthony Hope ◽  
Rosemary G Clarke ◽  
Christopher Barratt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document