Positional and combinational characteristics of terms

Terminology ◽  
1994 ◽  
Vol 1 (1) ◽  
pp. 61-95 ◽  
Author(s):  
Blaise Nkwenti-Azeh

Special-language term formation is characterised, inter alia, by the frequent reuse of certain lexical items in the formation of new syntagmatic units and by conceptually motivated restrictions on the position which certain elements can occupy within a compound term. This paper describes how the positional and combinational features of the terminology of a given domain can be identified from relevant existing term lists and used as part of a corpus-based, automatic term-identification strategy within a natural-language processing (e.g., machine-translation) system. The methodology described is exemplified and supported with data from the field of satellite communications.

2013 ◽  
Vol 8 (3) ◽  
pp. 908-912 ◽  
Author(s):  
Sumita Rani ◽  
Dr. Vijay Luxmi

Machine Translation System is an important area in Natural Language Processing. The Direct MT system is based upon the utilization of syntactic and vocabulary similarities between more or few related natural languages. The relation between two or more languages is based upon their common parent language. The similarity between Punjabi and Hindi languages is due to their parent language Sanskrit. Punjabi and Hindi are closely related languages with lots of similarities in syntax and vocabulary. In the present paper, Direct Machine Translation System from Punjabi to Hindi has been developed and its output is evaluated in order to get the suitability of the system.


2016 ◽  
Vol 1 (1) ◽  
pp. 45-49
Author(s):  
Avinash Singh ◽  
Asmeet Kour ◽  
Shubhnandan S. Jamwal

The objective behind this paper is to analyze the English-Dogri parallel corpus translation. Machine translation is the translation from one language into another language. Machine translation is the biggest application of the Natural Language Processing (NLP). Moses is statistical machine translation system allow to train translation models for any language pair. We have developed translation system using Statistical based approach which helps in translating English to Dogri and vice versa. The parallel corpus consists of 98,973 sentences. The system gives accuracy of 80% in translating English to Dogri and the system gives accuracy of 87% in translating Dogri to English system.


1992 ◽  
Vol 01 (02) ◽  
pp. 229-277 ◽  
Author(s):  
MICHAEL MCCORD ◽  
ARENDSE BERNTH ◽  
SHALOM LAPPIN ◽  
WLODEK ZADROZNY

This paper contains brief descriptions of the latest form of Slot Grammar and four natural language processing systems developed in this framework. Slot Grammar is a lexicalist, dependency-oriented grammatical system, based on the systematic expression of linguistic rules and data in terms of slots (essentially grammatical relations) and slot frames. The exposition focuses on the kinds of analysis structures produced by the Slot Grammar parser. These structures offer convenient input to post-syntactic processing (in particular to the applications dealt with in the paper); they contain in a single structure a useful combination of surface structure and logical form. The four applications discussed are: (1) An anaphora resolution system dealing with both NP anaphora and VP anaphora (and combinations of the two). (2) A meaning postulate based inference system for natural language, in which inference is done directly with Slot Grammar analysis structures. (3) A new transfer system for the machine translation system LMT, based on a new representation for Slot Grammar analyses which allows more convenient tree exploration. (4) A parser of "constructions", viewed as an extension of the core grammar allowing one to handle some linguistic phenomena that are often labeled "extragrammatical", and to assign a semantics to them.


2020 ◽  
pp. 3-17
Author(s):  
Peter Nabende

Natural Language Processing for under-resourced languages is now a mainstream research area. However, there are limited studies on Natural Language Processing applications for many indigenous East African languages. As a contribution to covering the current gap of knowledge, this paper focuses on evaluating the application of well-established machine translation methods for one heavily under-resourced indigenous East African language called Lumasaaba. Specifically, we review the most common machine translation methods in the context of Lumasaaba including both rule-based and data-driven methods. Then we apply a state of the art data-driven machine translation method to learn models for automating translation between Lumasaaba and English using a very limited data set of parallel sentences. Automatic evaluation results show that a transformer-based Neural Machine Translation model architecture leads to consistently better BLEU scores than the recurrent neural network-based models. Moreover, the automatically generated translations can be comprehended to a reasonable extent and are usually associated with the source language input.


Author(s):  
Rohan Pandey ◽  
Vaibhav Gautam ◽  
Ridam Pal ◽  
Harsh Bandhey ◽  
Lovedeep Singh Dhingra ◽  
...  

BACKGROUND The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this ‘Infodemic’ requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. OBJECTIVE We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. METHODS We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. RESULTS A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot “Satya” increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. CONCLUSIONS We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation. CLINICALTRIAL Not Applicable


2004 ◽  
Vol 10 (1) ◽  
pp. 57-89 ◽  
Author(s):  
MARJORIE MCSHANE ◽  
SERGEI NIRENBURG ◽  
RON ZACHARSKI

The topic of mood and modality (MOD) is a difficult aspect of language description because, among other reasons, the inventory of modal meanings is not stable across languages, moods do not map neatly from one language to another, modality may be realised morphologically or by free-standing words, and modality interacts in complex ways with other modules of the grammar, like tense and aspect. Describing MOD is especially difficult if one attempts to develop a unified approach that not only provides cross-linguistic coverage, but is also useful in practical natural language processing systems. This article discusses an approach to MOD that was developed for and implemented in the Boas Knowledge-Elicitation (KE) system. Boas elicits knowledge about any language, L, from an informant who need not be a trained linguist. That knowledge then serves as the static resources for an L-to-English translation system. The KE methodology used throughout Boas is driven by a resident inventory of parameters, value sets, and means of their realisation for a wide range of language phenomena. MOD is one of those parameters, whose values are the inventory of attested and not yet attested moods (e.g. indicative, conditional, imperative), and whose realisations include flective morphology, agglutinating morphology, isolating morphology, words, phrases and constructions. Developing the MOD elicitation procedures for Boas amounted to wedding the extensive theoretical and descriptive research on MOD with practical approaches to guiding an untrained informant through this non-trivial task. We believe that our experience in building the MOD module of Boas offers insights not only into cross-linguistic aspects of MOD that have not previously been detailed in the natural language processing literature, but also into KE methodologies that could be applied more broadly.


2019 ◽  
Author(s):  
Negacy D. Hailu ◽  
Michael Bada ◽  
Asmelash Teka Hadgu ◽  
Lawrence E. Hunter

AbstractBackgroundthe automated identification of mentions of ontological concepts in natural language texts is a central task in biomedical information extraction. Despite more than a decade of effort, performance in this task remains below the level necessary for many applications.Resultsrecently, applications of deep learning in natural language processing have demonstrated striking improvements over previously state-of-the-art performance in many related natural language processing tasks. Here we demonstrate similarly striking performance improvements in recognizing biomedical ontology concepts in full text journal articles using deep learning techniques originally developed for machine translation. For example, our best performing system improves the performance of the previous state-of-the-art in recognizing terms in the Gene Ontology Biological Process hierarchy, from a previous best F1 score of 0.40 to an F1 of 0.70, nearly halving the error rate. Nearly all other ontologies show similar performance improvements.ConclusionsA two-stage concept recognition system, which is a conditional random field model for span detection followed by a deep neural sequence model for normalization, improves the state-of-the-art performance for biomedical concept recognition. Treating the biomedical concept normalization task as a sequence-to-sequence mapping task similar to neural machine translation improves performance.


Sign in / Sign up

Export Citation Format

Share Document