Forest history: international studies on socio-economic and forest ecosystem change. Report No.2 of the IUFRO Task Force on Environmental Change.

2017 ◽  
Vol 63 (2-3) ◽  
pp. 59-65 ◽  
Author(s):  
Martin Lukac

AbstractBiodiversity not only responds to environmental change, but has been shown to be one of the key drivers of ecosystem function and service delivery. Forest soil biodiversity is also governed by these principles, the structure of soil biological communities is clearly determined by spatial, temporal and hierarchical factors. Global environmental change, together with land-use change and forest ecosystem management, impacts the aboveground structure and composition of European forests. Due to the close link between the above- and belowground parts of forest ecosystems, we know that soil biodiversity is also impacted. However, very little is known about the nature of these impacts; effects they have on the overall level of biodiversity, the functions it fulfills, and on the future stability of forests and forest soils. Even though much remains to be learned about the relationships between soil biodiversity and forest ecosystem functionality, it is clear that better effort needs to be made to preserve existing soil biodiversity and forest conservation strategies taking soils into account must be considered.


Author(s):  
Lauren Emily Barth ◽  
Brian J. Shuter ◽  
W. Gary Sprules ◽  
Charles K. Minns ◽  
James A Rusak

We evaluated the crustacean zooplankton size spectrum as an indicator of lake characteristics and ecosystem change. First, we used time-series from seven Canadian Shield lakes to identify the factors associated with among-lake and among-year variability in the spectrum slope (relative abundance of small and large zooplankton) and centered height (total abundance). Second, we used time-series from an invaded and three control lakes to assess change in mean and variability in slope and height due to a Bythotrephes invasion. We found that the slope and the height reflected among-lake predictors related to morphometry. The slope was responsive to long-term declining lake phosphorus levels, whereas the height reflected both increases in dissolved organic carbon and decreases in ice duration. We detected a significant increase (i.e. flattening) in mean slope and substantial (up to 120%) increases in the CV of height after Bythotrephes invaded Harp Lake. Thus, the zooplankton size spectrum was responsive to long-term environmental change and a strong top-down perturbation can be detected through regular and frequent monitoring programs.


Ecosystems ◽  
2019 ◽  
Vol 23 (3) ◽  
pp. 529-540 ◽  
Author(s):  
Katharina Mausolf ◽  
Werner Härdtle ◽  
Dietrich Hertel ◽  
Christoph Leuschner ◽  
Andreas Fichtner

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 579 ◽  
Author(s):  
Justin Hart ◽  
Jonathan Kleinman

The classification of discrete forest disturbance events is usually based on the spatial extent, magnitude, and frequency of the disturbance. Based on these characteristics, disturbances are placed into one of three broad categories, gap-scale, intermediate-severity, or catastrophic disturbance, along the disturbance classification gradient. We contend that our understanding of disturbance processes near the endpoints of the disturbance classification gradient far exceeds that of intermediate-severity events. We hypothesize that intermediate-severity disturbances are more common, and that they are more important drivers of forest ecosystem change than is commonly recognized. Here, we provide a review of intermediate-severity disturbances that includes proposed criteria for categorizing disturbances on the classification gradient. We propose that the canopy opening diameter to height ratio (D:H) be used to delineate gap-scale from intermediate-severity events and that the threshold between intermediate and catastrophic events be based on the influence of residual trees on the composition of the regeneration layer. We also provide examples of intermediate-severity disturbance agents, return intervals for these events, and recommendations for incorporating natural intermediate-severity disturbance patterns in silvicultural systems.


Sign in / Sign up

Export Citation Format

Share Document