Isoxazole-4-carboxylic Acid as a Metabolite ofStreptomycessp. and Its Herbicidal Activity

1991 ◽  
Vol 55 (5) ◽  
pp. 1415-1416 ◽  
Author(s):  
Kimie Kobinata ◽  
Shigeko Sekido ◽  
Masakazu Uramoto ◽  
Makoto Ubukata ◽  
Hiroyuki Osada ◽  
...  
2019 ◽  
Vol 34 (3) ◽  
pp. 402-407
Author(s):  
Benjamin P. Sperry ◽  
José Luiz C. S. Dias ◽  
Candice M. Prince ◽  
Jason A. Ferrell ◽  
Brent A. Sellers

AbstractThe pyridine carboxylic acid (PCA) herbicide family can exhibit differential activity within and among plant species, despite molecular resemblances. Aminocyclopyrachlor (AMCP), a pyrimidine carboxylic acid, is a recently discovered compound with similar use patterns to those of the PCA family; however, relative activity among PCAs and AMCP is not well understood. Therefore, the objective of this study was to quantify relative activity among aminopyralid, picloram, clopyralid, triclopyr, and AMCP in canola, squash, and okra using dose-response whole-plant bioassays. Clopyralid was less active than all other herbicides in all species and did not fit dose-response models. Aminopyralid and picloram performed similarly in squash (ED50 = 21.1 and 23.3 g ae ha−1, respectively). Aminopyralid was 3.8 times and 1.7 times more active than picloram in canola (ED50 = 60.3 and 227.7 g ha−1, respectively) and okra (ED50 = 10.3 and 17.3 g ha−1, respectively). Triclopyr (ED50 = 37.3 g ha−1) was more active than AMCP (ED50 = 112.9 g ha−1) and picloram in canola. Aminocyclopyrachlor (ED50 = 6.6 g ha−1) and triclopyr (ED50 = 7.8 g ha−1) were more active in squash than aminopyralid and picloram. In okra, AMCP (ED50 = 14.6 g ha−1) and aminopyralid (ED50 = 10.3 g ha−1) performed similarly but were more active than triclopyr (ED50 = 88.2 g ha−1). Herbicidal activity among AMCP and PCAs was vastly different despite molecular similarities that could be due to variable target-site sensitivity among species.


1991 ◽  
Vol 55 (5) ◽  
pp. 1415-1416 ◽  
Author(s):  
Kimie KOBINATA ◽  
Shigeko SEKIDO ◽  
Masakazu URAMOTO ◽  
Makoto UBUKATA ◽  
Hiroyuki OSADA ◽  
...  

1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.


2001 ◽  
Vol 26 (4) ◽  
pp. 383-384 ◽  
Author(s):  
Akemi HOSOKAWA ◽  
Osamu IKEDA ◽  
Chizuko SASAKI ◽  
Yasuko T. OSANO ◽  
Tetsuo JIKIHARA

2020 ◽  
Author(s):  
Aleksandra Balliu ◽  
Aaltje Roelofje Femmigje Strijker ◽  
Michael Oschmann ◽  
Monireh Pourghasemi Lati ◽  
Oscar Verho

<p>In this preprint, we present our initial results concerning a stereospecific Pd-catalyzed protocol for the C3 alkenylation and alkynylation of a proline derivative carrying the well utilized 8‑aminoquinoline directing group. Efficient C–H alkenylation was achieved with a wide range of vinyl iodides bearing different aliphatic, aromatic and heteroaromatic substituents, to furnish the corresponding C3 alkenylated products in good to high yields. In addition, we were able show that this protocol can also be used to install an alkynyl group into the pyrrolidine scaffold, when a TIPS-protected alkynyl bromide was used as the reaction partner. Furthermore, two different methods for the removal of the 8-aminoquinoline auxiliary are reported, which can enable access to both <i>cis</i>- and <i>trans</i>-configured carboxylic acid building blocks from the C–H alkenylation products.</p>


2019 ◽  
Author(s):  
Jiang Wang ◽  
Brian P. Cary ◽  
Peyton Beyer ◽  
Samuel H. Gellman ◽  
Daniel Weix

A new strategy for the synthesis of ketones is presented based upon the decarboxylative coupling of N-hydroxyphthalimide (NHP) esters with S-2-pyridyl thioesters. The reactions are selective for the cross-coupled product because NHP esters act as radical donors and the thioesters act as acyl donors. The reaction conditions are general and mild, with over 40 examples presented, including larger fragments and the 20-mer peptide Exendin(9-39) on solid support.


2019 ◽  
Author(s):  
Anas Alkayal ◽  
Volodymyr Tabas ◽  
Andrei V. Malkov ◽  
Benjamin Buckley

<div>The construction of carboxylic acid compounds in a selective fashion, from low value materials such as alkenes remains a long-standing challenge to synthetic chemists. In particular, anti-Markovnikov addition to styrenes are underdeveloped. Herein we report a new electrosynthetic approach to the selective hydrocarboxylation of substituted alkenes.</div>


2019 ◽  
Author(s):  
Anas Alkayal ◽  
Volodymyr Tabas ◽  
Andrei V. Malkov ◽  
Benjamin Buckley

<div>The construction of carboxylic acid compounds in a selective fashion, from low value materials such as alkenes remains a long-standing challenge to synthetic chemists. In particular, anti-Markovnikov addition to styrenes are underdeveloped. Herein we report a new electrosynthetic approach to the selective hydrocarboxylation of substituted alkenes.</div>


Sign in / Sign up

Export Citation Format

Share Document