Characterization of the Action of Antibiotics and Essential Oils against Bacteria by Surface-Enhanced Raman Spectroscopy and Scanning Electron Microscopy

2018 ◽  
Vol 52 (1) ◽  
pp. 190-200 ◽  
Author(s):  
Tiberiu Szöke-Nagy ◽  
Alin Sebastian Porav ◽  
Cristian Coman ◽  
Bogdan Ionut Cozar ◽  
Nicoleta Elena Dina ◽  
...  
2011 ◽  
Vol 1316 ◽  
Author(s):  
Ai Leen Koh ◽  
Robert Sinclair

ABSTRACTComposite Organic-Inorganic Nanoparticles (COINs) are a novel type of surface-enhanced Raman (SER) scattering nanoparticle formed by aggregating inorganic silver particles in the presence of a chosen organic molecule with a distinct Raman fingerprint. Binding between antibody-functionalized COINs and cells is detected primarily using Raman spectroscopy, which measures spectral shifts of the excitation light due to inelastic scattering. It has been suggested that the amount of antibody-conjugated COINs binding on cells will vary according to the antigen-expression levels in cells and will lead to changes in measured SERS intensities. COINs functionalized with antibodies CD54 and CD8 were conjugated to U937 and SupT1 cancer cells and investigated in this study. SERS intensity measurements were obtained from each of the four sample variants and normalized against control samples comprising non-antibody-functionalized COINs with cells. The amount of COINs binding on cells was determined using scanning electron microscopy (SEM) and correlated with the SER spectroscopy intensity. Although we found a positive correlation between the number of COINs binding to cells and their respective SERS intensity, this relationship is not one-to-one, nor does it appear to be linear. We demonstrated that SEM imaging and SER spectroscopy can complement each other to provide information about COINs binding onto cancer cells.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040009
Author(s):  
Ting Zhang ◽  
Junzhi Ye ◽  
Rakesh Arul ◽  
Tingxuan Yang ◽  
Yixuan Wang ◽  
...  

In this work, Ag nanoparticles were deposited in the TiO[Formula: see text] nanotube films through magnetron sputtering to form Ag-TiO[Formula: see text] nanocomposite. Scanning electron microscopy (SEM) was used to study microstructure and surface morphology. Rhodamine B (RhB) was deposited on the surface of Ag-TiO[Formula: see text] substrate for Raman spectroscopy test. The size of Ag nanoparticles can be controlled by changing the magnetron sputtering time. The result indicated that sputtering for 30 s obtained the highest Raman enhancement.


2017 ◽  
Vol 8 ◽  
pp. 2492-2503 ◽  
Author(s):  
Somi Kang ◽  
Sean E Lehman ◽  
Matthew V Schulmerich ◽  
An-Phong Le ◽  
Tae-woo Lee ◽  
...  

Herein we describe the fabrication and characterization of Ag and Au bimetallic plasmonic crystals as a system that exhibits improved capabilities for quantitative, bulk refractive index (RI) sensing and surface-enhanced Raman spectroscopy (SERS) as compared to monometallic plasmonic crystals of similar form. The sensing optics, which are bimetallic plasmonic crystals consisting of sequential nanoscale layers of Ag coated by Au, are chemically stable and useful for quantitative, multispectral, refractive index and spectroscopic chemical sensing. Compared to previously reported homometallic devices, the results presented herein illustrate improvements in performance that stem from the distinctive plasmonic features and strong localized electric fields produced by the Ag and Au layers, which are optimized in terms of metal thickness and geometric features. Finite-difference time-domain (FDTD) simulations theoretically verify the nature of the multimode plasmonic resonances generated by the devices and allow for a better understanding of the enhancements in multispectral refractive index and SERS-based sensing. Taken together, these results demonstrate a robust and potentially useful new platform for chemical/spectroscopic sensing.


2007 ◽  
Vol 61 (9) ◽  
pp. 994-1000 ◽  
Author(s):  
Alyson V. Whitney ◽  
Francesca Casadio ◽  
Richard P. Van Duyne

Silver film over nanospheres (AgFONs) were successfully employed as surface-enhanced Raman spectroscopy (SERS) substrates to characterize several artists' red dyes including: alizarin, purpurin, carminic acid, cochineal, and lac dye. Spectra were collected on sample volumes (1 × 10−6 M or 15 ng/μL) similar to those that would be found in a museum setting and were found to be higher in resolution and consistency than those collected on silver island films (AgIFs). In fact, to the best of the authors' knowledge, this work presents the highest resolution spectrum of the artists' material cochineal to date. In order to determine an optimized SERS system for dye identification, experiments were conducted in which laser excitation wavelengths were matched with correlating AgFON localized surface plasmon resonance (LSPR) maxima. Enhancements of approximately two orders of magnitude were seen when resonance SERS conditions were met in comparison to non-resonance SERS conditions. Finally, because most samples collected in a museum contain multiple dyestuffs, AgFONs were employed to simultaneously identify individual dyes within several dye mixtures. These results indicate that AgFONs have great potential to be used to identify not only real artwork samples containing a single dye but also samples containing dyes mixtures.


2019 ◽  
Vol 2 (11) ◽  
pp. 6960-6970
Author(s):  
Richard E. Darienzo ◽  
Jingming Wang ◽  
Olivia Chen ◽  
Maurinne Sullivan ◽  
Tatsiana Mironava ◽  
...  

Nanomedicine ◽  
2020 ◽  
Vol 15 (30) ◽  
pp. 2971-2989 ◽  
Author(s):  
Ting Lin ◽  
Ya-Li Song ◽  
Juan Liao ◽  
Fang Liu ◽  
Ting-Ting Zeng

Surface-enhanced Raman spectroscopy (SERS) is a Raman spectroscopy technique that has been widely used in food safety, environmental monitoring, medical diagnosis and treatment and drug monitoring because of its high selectivity, sensitivity, rapidness, simplicity and specificity in identifying molecular structures. This review introduces the detection mechanism of SERS and summarizes the most recent progress concerning the use of SERS for the detection and characterization of molecules, providing references for the later research of SERS in detection fields.


Sign in / Sign up

Export Citation Format

Share Document