Accurate Determination and Comprehensive Evaluation of Heavy Metals in Different Soils from Jilin Province in Northeast China

2020 ◽  
pp. 1-28
Author(s):  
Yuyan Zhao ◽  
Zeyu Zhang ◽  
Bing Li ◽  
Yu Zhao ◽  
Jilong Lu ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 894
Author(s):  
Panfeng Liu ◽  
Chaojie Zheng ◽  
Meilan Wen ◽  
Xianrong Luo ◽  
Zhiqiang Wu ◽  
...  

The study deals with the spatio-temporal distribution of heavy metals in the sediments of Chagan lake, Northeast China. The pollution history of heavy metals is studied simultaneously through the 210Pb dating method by analyzing the characteristic of As, Hg, Cd, Cr, Ni, Cu, Pb, and Zn concentration-depth profiles. The potential ecological risk index (RI) and geo-accumulation index (Igeo) were used to evaluate the contamination degree. Principal component analysis (PCA), based on the logarithmic transformation and isometric log-ratio (ilr) transformed data, was applied with the aim of identifying the sources of heavy metals. The element concentrations show that the heavy metals are enriched in the surface sediment and sediment core with a varying degree, which is higher in the surficial residue. The results of Igeo indicate that the Cd and Hg in the surface sediment have reached a slightly contaminated level while other elements, uncontaminated. The results of RI show that the study area can be classified as an area with moderate ecological risk in which Cd and Hg mostly contribute to the overall risk. For the sediment core, the 210Pb dating results accurately reflect the sedimentary history over 153 years. From two evaluation indices (RI and Igeo) calculated by element concentration, there is no contamination, and the potential ecological risk is low during this period. The comparative study between raw and ilr transformed data shows that the closure effect of the raw data can be eliminated by ilr transformation. After that, the components obtained by robust principal component analysis (RPCA) are more representative than those obtained by PCA, both based on ilr transformed dataset, after eliminating the influence of outliers. Based on ilr transformed data with RPCA, three primary sources could be inferred: Cr, Ni, As, Zn, and Cu are mainly derived from natural sources; the main source of Cd and Hg are associated with agricultural activities and energy development; as for Pb, it originated from traffic and coal-burning activities, which is consistent with the fact that the development of tourism, fishery, and agriculture industries has led to the continuous increasing levels of anthropogenic Pb in Chagan Lake. The summarized results and conclusions will undoubtedly enhance the governmental awareness of heavy metal pollution and facilitate appropriate pollution control measures in Chagan Lake.


2022 ◽  
Vol 11 (2) ◽  
pp. 393-404
Author(s):  
Mengting Song ◽  
Heran Xu ◽  
Guang Xin ◽  
Changjiang Liu ◽  
Xiaorong Sun ◽  
...  

2004 ◽  
Vol 14 (3) ◽  
pp. 215-220 ◽  
Author(s):  
Shu-xia Yu ◽  
Jin-cheng Shang ◽  
Huai-cheng Guo

2019 ◽  
Vol 11 (14) ◽  
pp. 3793 ◽  
Author(s):  
Yuangang Li ◽  
Maohua Sun ◽  
Guanghui Yuan ◽  
Qi Zhou ◽  
Jinyue Liu

In order to evaluate the atmospheric environment sustainability in the provinces of Northeast China, this paper has constructed a comprehensive evaluation model based on the rough set and entropy weight methods. This paper first constructs a Pressure-State-Response (PSR) model with a pressure layer, state layer and response layer, as well as an atmospheric environment evaluation system consisting of 17 indicators. Then, this paper obtains the weight of different indicators by using the rough set method and conducts equal-width discrete analysis and clustering analysis by using SPSS software. This paper has found that different discrete methods will end up with different reduction sets and multiple indicators sharing the same weight. Therefore, this paper has further introduced the entropy weight method based on the weight solution determined by rough sets and solved the attribute reduction sets of different layers by using the Rosetta software. Finally, this paper has further proved the rationality of this evaluation model for atmospheric environment sustainability by comparing the results with those of the entropy weight method alone and those of the rough set method alone. The results show that the sustainability level of the atmospheric environment in Northeast China provinces has first improved, and then worsened, with the atmospheric environment sustainability level reaching the highest level of 0.9275 in 2014, while dropping to the lowest level of 0.6027 in 2017. Therefore, future efforts should focus on reducing the pressure layer and expanding the response layer. Based on analysis of the above evaluation results, this paper has further offered recommendations and solutions for the improvement of atmospheric environment sustainability in the three provinces of Northeast China.


2010 ◽  
Vol 56 (No. 2) ◽  
pp. 76-81 ◽  
Author(s):  
R.K. Verma ◽  
D.V. Yadav ◽  
C.P. Singh ◽  
A. Suman ◽  
A. Gaur

An experiment was conducted to study the effect of heavy metals (Cd, Cr and Pb), soil texture (sandy, loam and clay) and incubation periods (7, 15, 30, 60, 90 and 120 days) on soil respiration (CO<sub>2</sub> evolution) during sugarcane trash decomposition in laboratory conditions of the Indian Institute of Sugarcane Research, Lucknow, India. Surface soils (0–15 cm) were collected from agricultural fields and crop residue of sugarcane trash (<i>Saccharum officinarum</i> L.) was taken in the institute farm. Crop residue (10 t/ha) and heavy metals (10, 50, 100, 1000 &mu;g/g) were mixed and incubated at 30°C ± 2°C in an incubator. The rate of soil respiration (CO<sub>2</sub> evolution) decreased with increasing heavy metals concentration. During the 120 days, the toxicity decreased but still remained significant. Maximum soil respiration was recorded at 7 days of incubation period; further, it decreased with increasing incubation period. The highest drop of soil respiration rate was caused by addition of 1000 &mu;g/g Cd, Cr and Pb levels. Clay soils evolved maximum CO<sub>2</sub> followed by loam and sandy soil.


Sign in / Sign up

Export Citation Format

Share Document