Characterization of the Stability of Vegetable Oil by Synchronous Fluorescence Spectroscopy and Differential Scanning Calorimetry (DSC)

2021 ◽  
pp. 1-11
Author(s):  
Yukun Zhang ◽  
Jinan Xia ◽  
Chaomin Zhang ◽  
Ming Ling ◽  
Feifei Cheng
1999 ◽  
Vol 72 (1) ◽  
pp. 165-173 ◽  
Author(s):  
D. J. Burlett

Abstract Elastomers are used in many industrial applications because of their remarkable toughness and elasticity. However, the source of these properties is also a weakness, in that loss of properties via oxidation is an important factor in their selection. Thermoanalytical techniques, such as differential scanning calorimetry (DSC), provide useful tools for the characterization of the stability of elastomers. DSC can not only be used to determine oxidative induction times under isothermal conditions but can also be used to determine apparent overall activation energies of the oxidation process. An evaluation of these techniques is made and the technique is used to compare the oxidation susceptibility of polybutadienes of different microstructure. The results of these DSC scans are interpreted in terms of the chemistry of the oxidation process using FTIR results.


2013 ◽  
Vol 432 ◽  
pp. 413-417 ◽  
Author(s):  
Li Ming Zhang ◽  
Zhi Ying Hu ◽  
Li Hu Yan ◽  
Run Liu Li ◽  
Cheng Wei Cao ◽  
...  

In order to improving the stability and bioavailability of tea polyphenols (TP), the TP/starchinclusion complex(TPSIC) was prepared by adding TP to starch slurry during gelatinization, and its TPreleasing behaviorswas investigated. The formation of inclusion complex was confirmed by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The TPSIC showed a characteristic of V-type crystallinity and a looser gel matrix. The encapsulation increased the stability of TP and generated a good releasing behavior after enzymatic erosion. The lower releasing rate indicated that the prepared inclusion complexes had good retention ability and effectively reduced the releasing rate of TP. The releasing rate of TPSIC increased with the increase of TP concentration.


2020 ◽  
Vol 17 (4) ◽  
pp. 303-311
Author(s):  
Roberta Cassano ◽  
Federica Curcio ◽  
Delia Mandracchia ◽  
Adriana Trapani ◽  
Sonia Trombino

Aim: The work’s aim was the preparation and characterization of a hydrogel based on gelatin and glycerine, useful for site-specific release of benzydamine, an anti-inflammatory drug, able to attenuate the inflammatory process typical of the vaginal infection. Objective: The obtained hydrogel has been characterized by Electronic Scanning Microscopy (SEM) and Differential Scanning Calorimetry (DSC). In addition, due to the precursor properties, the hydrogel exhibits a relevant mucoadhesive activity. Methods: The swelling degree was evaluated at two different pHs and at defined time intervals. In particular, phosphate buffers were used at pH 6.6, in order to mimic the typical conditions of infectious diseases at the vaginal level, particularly for HIV-seropositive pregnant women, and pH 4.6, to simulate the physiological environment. Results: The obtained results revealed that the hydrogel swells up well at both pHs. Conclusion: Release studies conducted at both pathological and physiological pHs have shown that benzydamine is released at the level of the vaginal mucosa in a slow and gradual manner. These data support the hypothesis of the hydrogel use for the site-specific release of benzydamine in the vaginal mucosa.


Sign in / Sign up

Export Citation Format

Share Document