Evaluation of the Optimal Dilution Sequence for the Minimization of the Concentration Uncertainty in Total Reflection X-Ray Fluorescence (TXRF)

2021 ◽  
pp. 1-17
Author(s):  
Leonardo Bennun ◽  
Haydn Barros ◽  
Yulimar De Araujo ◽  
Cristina Vázquez ◽  
María Natalia Piol ◽  
...  
Keyword(s):  
Author(s):  
Werner P. Rehbach ◽  
Peter Karduck

In the EPMA of soft x rays anomalies in the background are found for several elements. In the literature extremely high backgrounds in the region of the OKα line are reported for C, Al, Si, Mo, and Zr. We found the same effect also for Boron (Fig. 1). For small glancing angles θ, the background measured using a LdSte crystal is significantly higher for B compared with BN and C, although the latter are of higher atomic number. It would be expected, that , characteristic radiation missing, the background IB (bremsstrahlung) is proportional Zn by variation of the atomic number of the target material. According to Kramers n has the value of unity, whereas Rao-Sahib and Wittry proposed values between 1.12 and 1.38 , depending on Z, E and Eo. In all cases IB should increase with increasing atomic number Z. The measured values are in discrepancy with the expected ones.


2003 ◽  
Vol 107 ◽  
pp. 203-206 ◽  
Author(s):  
M. Bounakhla ◽  
A. Doukkali ◽  
K. Lalaoui ◽  
H. Aguenaou ◽  
N. Mokhtar ◽  
...  
Keyword(s):  

1988 ◽  
Vol 32 ◽  
pp. 105-114 ◽  
Author(s):  
H. Schwenke ◽  
W. Berneike ◽  
J. Knoth ◽  
U. Weisbrod

AbstractThe total reflection of X-rays is mainly determined by three parameters , that is the orltical angle, the reflectivity and the penetration depth. For X-ray fluorescence analysis the respective characteristic features can be exploited in two rather different fields of application. In the analysis of trace elements in samples placed as thin films on optical flats, detection limits as low as 2 pg or 0.05 ppb, respectively, have been obtained. In addition, a penetration depth in the nanometer regime renders Total Reflection XRF an inherently sensitive method for the elemental analysis of surfaces. This paper outlines the main physical and constructional parameters for instrumental design and quantitation in both branches of TXRF.


2015 ◽  
Vol 44 (6) ◽  
pp. 451-457 ◽  
Author(s):  
Eric DaSilva ◽  
Alison Matthews David ◽  
Ana Pejović-Milić

Sign in / Sign up

Export Citation Format

Share Document