nanometer regime
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 13)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 1048 ◽  
pp. 147-157
Author(s):  
Naveenbalaji Gowthaman ◽  
Viranjay Srivastava

The channel material of a gate describes the operating condition of the MOSFET. A suitable operating condition prevails in MOSFETs if the transistors are quite enough to observe and control at the nanometer regime. An efficient gate and channel material have been proposed in this work which is based on the electrical properties they exhibit at the temperature of 300K. The doping concentration for the electrons and holes is maintained to be 1Χ1019cm-3 for the entire electronic simulator. The simulation results show that using La2O3 along with Indium Nitride (InN) material for the designing of Double-Gate (DG) MOSFETs provides better controllability over the transistor at a channel length of 50nm. This proposed DG-MOSFET is more compliant than the conventional coplanar MOSFETs based on Silicon.


2021 ◽  
pp. 359-370
Author(s):  
Amol S. Sankpala, D. J. Peteb

Leakage current, power and area is the key challenges for VLSI designer during implementation of low power devices. In an integrated circuit number of transistors double in small silicon area every two years. There are certain limitations of cmos technology in nanometer regime out of which leakage current, leakage power, average current and average power is an important issues. In this paper, Retention time improvement in three transistor dynamic random access memory using double gate Finfet technology is proposed. Double gate finfet technology in 3TDRAM overcomes the issues related to cmos technology and it does not required additional circuitry. Proposed 3T DRAM is investigated with cmos and finfet technology at 90nm technology using cadence tool. Analysis of 3TDRAM using cmos and double gate finfet technology is carried out by variation in supply voltage and capacitance values. In double gate finfet technology leakage parameters are minimized and retention time(Th) is more improved as compared to cmos technology is observed.


2020 ◽  
Vol 132 (15) ◽  
pp. 5905-5905
Author(s):  
Pia Winterwerber ◽  
Sean Harvey ◽  
David Y. W. Ng ◽  
Tanja Weil
Keyword(s):  

2019 ◽  
Vol 132 (15) ◽  
pp. 6200-6205 ◽  
Author(s):  
Pia Winterwerber ◽  
Sean Harvey ◽  
David Y. W. Ng ◽  
Tanja Weil
Keyword(s):  

2019 ◽  
Author(s):  
Gavin R. Kiel ◽  
Harrison Bergman ◽  
T. Don Tilley

Polycyclic aromatic hydrocarbons (PAHs) are attractive synthetic building blocks for more complex conjugated nanocarbons, but their use for this purpose requires appreciable quantities of a PAH with reactive functional groups. Despite tremendous recent advances, most synthetic methods cannot satisfy these demands. Here we present a general and scalable [2+2+n] (n = 1 or 2) cycloaddition strategy to access PAHs that are decorated with synthetically versatile alkynyl groups and its application to seven structurally diverse PAH ring systems (thirteen new alkynylated PAHs in total). The critical discovery is the site-selectivity of an Ir-catalyzed [2+2+2] cycloaddition, which preferentially cyclizes tethered diyne units with preservation of other (peripheral) alkynyl groups. The potential for generalization of the site-selectivity to other [2+2+n] reactions is demonstrated by identification of a Cp<sub>2</sub>Zr-mediated [2+2+1] / metallacycle transfer sequence for synthesis of an alkynylated, selenophene-annulated PAH. The new PAHs are excellent synthons for macrocyclic conjugated nanocarbons. As a proof of concept, four were subjected to Mo catalysis to afford large, PAH-containing arylene ethylene macrocycles, which possess a range of cavity sizes reaching well into the nanometer regime. More generally, this work is a demonstration of how site-selective reactions can be harnessed to rapidly build up structural complexity in a practical, scalable fashion.


Sign in / Sign up

Export Citation Format

Share Document