NO Emission of a Non-premixed Oxygen-Enhanced Flame in Burned Gas Entrainment above the Self-Ignition Temperature (BEST) Conditions

2017 ◽  
Vol 190 (3) ◽  
pp. 490-515
Author(s):  
Jeongseog Oh ◽  
Eungyeong Lee ◽  
Dongsoon Noh
2017 ◽  
Vol 78 (1) ◽  
pp. 2365-2379
Author(s):  
Ulf Bossel

Fire Safety ◽  
2021 ◽  
Vol 38 ◽  
pp. 32-37
Author(s):  
V. Tovarianskyi ◽  
I. Adolf ◽  
V. Petrovskyi

Formulation of the problem. Most of the fabrics used in the technological processes of garment enterprises are classified as combustible materials and are part of the fire load, which threatens the outbreak and rapid spread of fires in the premises of garment factories. Therefore, it is important to study the indicators of the fire hazard of fabrics to identify the most dangerous of them, as well as to increase the efficiency of fire safety at sewing enterprises.The purpose of the work is to obtain the dependences of the values of ignition and self-ignition temperatures of cotton fabrics on the composition of cotton.Results. It was found that the crushed 100% cotton fabric flamed best, and the worst − solid polyester as a fabric without cotton. The lowest value of the temperature at which ignition was observed was 215°C for cotton (100%, shredded fabric), and if this value is reduced - there were failures, which are caused in particular by the fact that at lower temperatures flammable vapours are no formed in concentrations sufficient for combustion. It was found that the ignition / spontaneous combustion temperatures for a solid sample of the fabric with a composition of 100% cotton are 235°C/420°C, and for a solid sample of the fabric with a composition of 100% polyester − 360°C/500°C, respectively. Ignition / spontaneous com-bustion temperatures for finely divided fabrics are 8,5%/4,78% (cotton fabric) and 2.8%/6% (polyester) lower than the values obtained for whole fabrics.Results. According to the results of the analysis of the most common fabrics (table 1) used in garment enterprises. Identified that the biggest fire hazard is inherent containing cotton. The lowest ignition temperature is observed for cotton (100% shredded fabric) and is 215°C, which is 1,63 times less than the ignition temperature of polyester (0% cotton, shredded fabric). The lowest self-ignition temperature is also observed for cotton (100% shredded fabric) and is 400°C, which is 1,18 less than the self-ignition temperature of polyester (0% cotton, shredded fabric).


2022 ◽  
Vol 354 ◽  
pp. 00012
Author(s):  
Maria Prodan ◽  
Andrei Szollosi-Moța ◽  
Vasilica Irina Nălboc ◽  
Niculina Sonia Șuvar ◽  
Adrian Jurca

Spontaneous combustion is a phenomenon that results from the heating of combustible organic powders by slow oxidation and which occurs through the air passage (created by an air depression) through the mass of dust. The oxidation phenomenon of combustible powders represents their reaction with atmospheric oxygen resulting in products of carbon dioxide, carbon oxide, water and other gases whose content depends on the temperature at which the oxidation takes place. The self-ignition of combustible dusts depends on their chemical composition, the properties of component substances, on the particle size and geometry of the material mass and, last but not least, on the temperature of the environment. Due to global worries of sustainability in construction engineering the trend is to use ecofriendly organic waste to various purposes as in construction materials. The challenge is that by using this kind of materials one should ensure the safety related to the process of such organic materials which are known to have combustible properties. The purpose of this work is to present the self-ignition behavior of combustible dusts such as sunflower and wood by means of drying tests under constant temperature conditions.


2018 ◽  
Vol 247 ◽  
pp. 00006 ◽  
Author(s):  
Marzena Półka

The objective of the paper was to review and to assess the propensity of selected peat dusts to self-ignite. A comparison was carried out of the impact that the volume of dust storage exerts on values of the self-ignition temperature. The necessity of increasing peat share in generation of energy forced the investors to re-design or create from scratch a new technology. Due to differences between combustion of the fuel - biomass and coal - also the safety issues required a completely new approach. Therefore, this article presents factors that affect spontaneous heating and self-ignition of peat on its self-ignition properties when stored in bulk. The values of experimentally determined temperatures of self-ignition for peat are included. The research was performed in compliance with methods specified in PN-EN 15188:2009. The were used three types of dusts having varying crushing levels and level acidity. Based on the analysis of results, it was determined that analysing the self-ignition tendency of the examined dusts is of informative nature and it can differ from the actual conditions prevailing when stockpiling the examined peat dusts.


2019 ◽  
Vol 42 ◽  
Author(s):  
Lucio Tonello ◽  
Luca Giacobbi ◽  
Alberto Pettenon ◽  
Alessandro Scuotto ◽  
Massimo Cocchi ◽  
...  

AbstractAutism spectrum disorder (ASD) subjects can present temporary behaviors of acute agitation and aggressiveness, named problem behaviors. They have been shown to be consistent with the self-organized criticality (SOC), a model wherein occasionally occurring “catastrophic events” are necessary in order to maintain a self-organized “critical equilibrium.” The SOC can represent the psychopathology network structures and additionally suggests that they can be considered as self-organized systems.


Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Sign in / Sign up

Export Citation Format

Share Document