Experimental Study and Numerical Analysis on Pressure Drop and Temperature Field Characteristics of Asymmetric Cell Technology Diesel Particulate Filter for Silicon Carbide

Author(s):  
Yu Lü ◽  
Shenke Lu ◽  
Guisheng Chen ◽  
Qing Li ◽  
Chunlin Chen ◽  
...  
2019 ◽  
pp. 146808741987457 ◽  
Author(s):  
Jun Zhang ◽  
Yanfei Li ◽  
Victor W Wong ◽  
Shijin Shuai ◽  
Jinzhu Qi ◽  
...  

Diesel particulate filters are indispensable for diesel engines to meet the increasingly stringent emission regulations. A large amount of ash would accumulate in the diesel particulate filter over time, which would significantly affect the diesel particulate filter performance. In this work, the lubricant-derived ash effects on diesel particulate filter pressure drop, diesel particulate filter filtration performance, diesel particulate filter temperature field during active regeneration, and diesel particulate filter downstream emissions during active regeneration were studied on an engine test bench. The test results show that the ash accumulated in the diesel particulate filter would decrease the diesel particulate filter pressure drop due to the “membrane effect” when the diesel particulate filter ash loading is lower than about 10 g/L, beyond which the diesel particulate filter pressure drop would be increased due to the reduction of diesel particulate filter effective volume. The ash loaded in the diesel particulate filter could significantly improve the diesel particulate filter filtration efficiency because it would fill the pores of diesel particulate filter wall. The diesel particulate filter peak temperature during active regeneration is consistent with the diesel particulate filter initial actual soot loading density prior to regeneration at various diesel particulate filter ash loading levels, while the diesel particulate filter maximum temperature gradient would increase with the diesel particulate filter ash loading increase, whether the diesel particulate filter is regenerated at the same soot loading level or the same diesel particulate filter pressure drop level. The ash accumulation in the diesel particulate filter shows little effects on diesel particulate filter downstream CO, total hydrocarbons, N2O emissions, and NO2/NO x ratio during active regeneration. However, a small amount of SO2 emissions was observed when the diesel particulate filter ash loading is higher than 10 g/L. The ash accumulated in the diesel particulate filter would increase the diesel particulate filter downstream sub-23 nm particle emissions but decrease larger particle emissions during active regeneration.


Author(s):  
Rui Fukui ◽  
Yuki Okamoto ◽  
Masayuki Nakao

As a way of reducing the amount of particulate matter (PM) contained in the exhaust gas, diesel particulate filter (DPF) is widely used. To keep the condition of DPF normal and effective, estimation of the amount of PM deposits in the DPF is important. The estimation is mainly conducted based on the value of pressure drop across the DPF. Occasionally, the value of the pressure drop rises suddenly and it leads to overestimation of the amount of PM deposits. In order to elucidate the cause of the sudden pressure drop increase phenomenon, this paper first reveals the engine operating conditions which invoke this phenomenon. The authors also have developed a visualization method to realize the wide-perspective internal observation of the DPF. The observation experiment has been conducted with a commercial engine and DPF under the revealed conditions. Experimental results make clear that the phenomenon is caused by PM deposit layer collapse and channel plugging.


2013 ◽  
Vol 6 (2) ◽  
pp. 688-698 ◽  
Author(s):  
Dimitrios Zarvalis ◽  
Dimitrios Pappas ◽  
Souzana Lorentzou ◽  
Theofilaktos Akritidis ◽  
Leonidas Chasapidis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document