Experimental Analysis of Sudden Pressure Increase Phenomenon by Real-Time Internal Observation of Diesel Particulate Filter

Author(s):  
Rui Fukui ◽  
Yuki Okamoto ◽  
Masayuki Nakao

As a way of reducing the amount of particulate matter (PM) contained in the exhaust gas, diesel particulate filter (DPF) is widely used. To keep the condition of DPF normal and effective, estimation of the amount of PM deposits in the DPF is important. The estimation is mainly conducted based on the value of pressure drop across the DPF. Occasionally, the value of the pressure drop rises suddenly and it leads to overestimation of the amount of PM deposits. In order to elucidate the cause of the sudden pressure drop increase phenomenon, this paper first reveals the engine operating conditions which invoke this phenomenon. The authors also have developed a visualization method to realize the wide-perspective internal observation of the DPF. The observation experiment has been conducted with a commercial engine and DPF under the revealed conditions. Experimental results make clear that the phenomenon is caused by PM deposit layer collapse and channel plugging.

Author(s):  
Rui Fukui ◽  
Yuki Okamoto ◽  
Masayuki Nakao

As a way of reducing the amount of Particulate Matter (PM) contained in the exhaust gas, Diesel Particulate Filter (DPF) is widely used. To keep the condition of DPF normal and effective, estimation of the amount of PM deposits in the DPF is important. The estimation is mainly conducted based on the value of pressure drop across the DPF. Occasionally, the value of the pressure drop rises suddenly and it leads to overestimation of the amount of PM deposits. In order to elucidate the cause of the sudden pressure drop increase phenomenon, this paper firstly reveals the engine operating conditions which invoke this phenomenon. The authors also have developed a visualization method to realize the wide-perspective internal observation of the DPF. The observation experiment has been conducted with a commercial engine and DPF under the revealed conditions. Experimental results make clear that the phenomenon is caused by PM deposit layer collapse and channel plugging.


2018 ◽  
Vol 20 (8-9) ◽  
pp. 953-966 ◽  
Author(s):  
Madhu Singh ◽  
Mek Srilomsak ◽  
Yujun Wang ◽  
Katsunori Hanamura ◽  
Randy Vander Wal

Development of the regeneration process on diesel particulate filters requires a better understanding of soot oxidation phenomena, especially its relation to soot nanostructure. Nitrogen dioxide (NO2) is known to play an essential role in passive regeneration by oxidizing soot at low temperatures, especially in the presence of oxygen (O2) in the exhaust. However, change in soot nanostructure due to oxidation by NO2–O2 mixtures has not received much attention. This work focuses on nanostructure evolution during passive regeneration of the diesel particulate filter by oxidation of soot at normal exhaust gas temperatures (300°C–400°C). High-resolution transmission electron microscopy of partially oxidized model carbons (R250, M1300, arc-generated soot) and diesel soot under NO2–O2 mixtures is used to investigate physical changes in nanostructure correlating with the material’s behavior during oxidation. Microscopy reveals the changing nanostructure of model carbons during oxidation while fringe analysis of the images points to the differences in the structural metrics of fringe length and tortuosity of the resultant structures. The variation in oxidation rates highlights the inter-dependence of the material’s reactivity with its structure. NO2 preferentially oxidizes edge-site carbon, promotes surface oxidation by altering the particle’s burning mode with increased overall reactivity of NO2+O2 resulting in inhibition of internal burning, typically observed by O2 at exhaust gas temperatures.


2019 ◽  
pp. 146808741987457 ◽  
Author(s):  
Jun Zhang ◽  
Yanfei Li ◽  
Victor W Wong ◽  
Shijin Shuai ◽  
Jinzhu Qi ◽  
...  

Diesel particulate filters are indispensable for diesel engines to meet the increasingly stringent emission regulations. A large amount of ash would accumulate in the diesel particulate filter over time, which would significantly affect the diesel particulate filter performance. In this work, the lubricant-derived ash effects on diesel particulate filter pressure drop, diesel particulate filter filtration performance, diesel particulate filter temperature field during active regeneration, and diesel particulate filter downstream emissions during active regeneration were studied on an engine test bench. The test results show that the ash accumulated in the diesel particulate filter would decrease the diesel particulate filter pressure drop due to the “membrane effect” when the diesel particulate filter ash loading is lower than about 10 g/L, beyond which the diesel particulate filter pressure drop would be increased due to the reduction of diesel particulate filter effective volume. The ash loaded in the diesel particulate filter could significantly improve the diesel particulate filter filtration efficiency because it would fill the pores of diesel particulate filter wall. The diesel particulate filter peak temperature during active regeneration is consistent with the diesel particulate filter initial actual soot loading density prior to regeneration at various diesel particulate filter ash loading levels, while the diesel particulate filter maximum temperature gradient would increase with the diesel particulate filter ash loading increase, whether the diesel particulate filter is regenerated at the same soot loading level or the same diesel particulate filter pressure drop level. The ash accumulation in the diesel particulate filter shows little effects on diesel particulate filter downstream CO, total hydrocarbons, N2O emissions, and NO2/NO x ratio during active regeneration. However, a small amount of SO2 emissions was observed when the diesel particulate filter ash loading is higher than 10 g/L. The ash accumulated in the diesel particulate filter would increase the diesel particulate filter downstream sub-23 nm particle emissions but decrease larger particle emissions during active regeneration.


Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) have forced automotive manufacturers to equip a diesel particulate filter (DPF) on diesel cars. Generally, postinjection is used as a method to regenerate the DPF. However, it is known that postinjection deteriorates the specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration is one of the key technologies for diesel powertrains equipped with a DPF. This paper presents correlations between the fuel injection strategy and exhaust gas temperature for DPF regeneration. The experimental apparatus consists of a single-cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, the postinjection timing was in the range of 40 deg aTDC to 110 deg aTDC and double postinjection was considered. In addition, the effects of the injection pressure were investigated. The engine load was varied among low load to midload conditions, and the amount of fuel of postinjection was increased up to 10 mg/stk. The oil dilution during the fuel injection and combustion processes was estimated by the diesel loss measured by comparing two global equivalences ratios: one measured from a lambda sensor installed at the exhaust port and one estimated from the intake air mass and injected fuel mass. In the present study, the differences of the global equivalence ratios were mainly caused by the oil dilution during postinjection. The experimental results of the present study suggest optimal engine operating conditions including the fuel injection strategy to obtain an appropriate exhaust gas temperature for DPF regeneration. The experimental results of the exhaust gas temperature distributions for various engine operating conditions are discussed. In addition, it was revealed that the amount of oil dilution was reduced by splitting the postinjection (i.e., double postinjection). The effects of the injection pressure on the exhaust gas temperature were dependent on the combustion phasing and injection strategies.


Sign in / Sign up

Export Citation Format

Share Document