Influence of Long-term Tillage, Straw, and N Fertilizer Management on Crop Yield, N Uptake, and N Balance Sheet in Two Contrasting Soil Types

2011 ◽  
Vol 42 (20) ◽  
pp. 2548-2560 ◽  
Author(s):  
Sukhdev S. Malhi ◽  
M. Nyborg ◽  
M. F. Dyck ◽  
D. Puurveen
2016 ◽  
Vol 155 (4) ◽  
pp. 599-612 ◽  
Author(s):  
C. ZOU ◽  
R. C. PEARCE ◽  
J. H. GROVE ◽  
M. S. COYNE

SUMMARYFew studies have investigated nitrogen (N) fertilizer management in no-tillage (NT) tobacco (Nicotiana tobacumL.) production systems, even though N fertilization is known to influence tobacco cured leaf yield and quality. The present study evaluated how tillage practice and N fertilizer rate affected burley tobacco agronomic performance, plant available nitrogen (PAN) supply, and leaf chemical constituents. In 2012 and 2013, three N fertilizer rates (0, 140 and 280 kg N/ha) were introduced as split-plots within a long-term NT and conventional tillage (CT) (mouldboard plough) comparison study. Results (2007–2013) showed that the effect of tillage on tobacco yield depended on seasonal weather; NT tobacco appeared to have lower yield than CT tobacco in seasons with <450 mm growing season rainfall, but similar yields when rainfall was >500 mm. In 2012 (432 mm rainfall; 84% of the long-term seasonal mean), leaf SPAD reading, leaf nitrate concentration, total nitrogen concentration at the topping day (i.e. removal of flowers/buds at the tops of the plants) and cured leaf nicotine and alkaloid content suggested that N deficiency was more pronounced in NT than CT at the lowest N fertilizer rate. The PAN supply, as measured by a modifiedin situresin core method, was similar in 2012 between NT and CT, suggesting that plant factors may have had a role in N uptake efficiency. This scenario did not repeat in 2013 (706 mm rainfall; 137% of the long-term seasonal mean). Even though N fertilization rates were identical for both tillage practices in 2012 and 2013, PAN was lower, on average, in 2012. Because N uptake is largely the result of mass flow, the impact of reduced root density in NT tobacco would be expected to be more pronounced in a season such as 2012, when water was limited. Banding N close to the tobacco root system and/or side-dressing some portion of N may be recommended strategies to improve N use efficiency in NT burley tobacco production.


2020 ◽  
pp. 1-8
Author(s):  
Tran Kim Ngan Luong ◽  
Frank Forcella ◽  
Sharon A. Clay ◽  
Michael S. Douglass ◽  
Sam E. Wortman

Abrasive weeding is a nonchemical weed control tactic that uses small, gritty materials propelled with compressed air to destroy weed seedlings. Organic fertilizers have been used successfully as abrasive grits to control weeds, but the goal for this study was to explore the effects of fertilizer grit, application rates, and background soil fertility on weeds, plant available nitrogen (N) uptake, and crop yield. Field trials were conducted in organic ‘Carmen’ sweet red pepper (Capsicum annuum) and organic ‘Gypsy’ broccoli (Brassica oleracea var. italica) and treatments included organic fertilizer grit (8N–0.9P–3.3K vs. 3N–3.1P–3.3K), grit application rates (low vs. high), compost amendments (with and without), and weedy and weed-free controls. Weed biomass was harvested at 84 days and 65 days after transplanting for pepper and broccoli, respectively. Simulated total plant available N (nitrate + ammonium) uptake was measured with ion exchange resin stakes between 7 and 49 days after the first of two grit applications. Produce was harvested at maturity, graded for marketability, and weighed. The higher grit application rate, regardless of fertilizer type, reduced the weed biomass by 75% to 89% for pepper and by 86% to 99% for broccoli. By 5 weeks after the first grit application, simulated plant N uptake was greatest following grit application with the 8% N fertilizer, followed by the 3% N fertilizer, and lowest in the weedy control. The high grit application rate of 8% N fertilizer increased pepper yield by 112% compared with the weedy control, but it was similar to that of the weed-free control. Broccoli was less responsive to abrasive grits, with yield changes ranging from no difference to up to a 36% increase (relative to the weedy control) depending on the application rate and compost amendment. This is the first evidence indicating that the nutrient composition of organic fertilizer abrasive grits can influence in-season soil N dynamics, weed competition, and crop yield. The results suggest that abrasive weeding technology could be leveraged to improve the precision of in-season fertilizer management of organic crops.


1995 ◽  
Vol 36 (3-4) ◽  
pp. 165-174 ◽  
Author(s):  
M. Nyborg ◽  
E.D. Solberg ◽  
R.C. Izaurralde ◽  
S.S. Malhi ◽  
M. Molina-Ayala

2011 ◽  
Vol 124 (3) ◽  
pp. 378-391 ◽  
Author(s):  
S.S. Malhi ◽  
M. Nyborg ◽  
E.D. Solberg ◽  
M.F. Dyck ◽  
D. Puurveen

2016 ◽  
Vol 5 (3) ◽  
pp. 32 ◽  
Author(s):  
Miles Dyck ◽  
Sukhdev S. Malhi ◽  
Marvin Nyborg ◽  
Dyck Puurveen

<p>Pre-seeding tillage of long-term no-till (NT) land may alter crop production by changing the availability of some nutrients in soil. Effects of short-term (4 years) tillage (hereafter called reverse tillage [RT]) of land previously under long-term (29 or 30 years) NT, with straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha<sup>-1</sup> in SRet, and 0 kg N ha<sup>-1</sup> in SRem plots), were determined on plant yield (seed + straw, or harvested as forage/silage at soft dough stage), and N and P uptake in growing seasons from 2010 to 2013 at Breton (Gray Luvisol [Typic Cryoboralf] loam) and from 2009 to 2012 at Ellerslie (Black Chernozem [Albic Argicryoll] loam), Alberta, Canada. Plant yield, N uptake and P uptake tended to be greater with RT compared to NT in most cases at both sites, although significant in a few cases only at Ellerslie. On average over both sites, RT produced greater plant yield by 560 kg ha<sup>-1</sup> yr<sup>-1</sup>, N uptake by 5.8 kg N ha<sup>-1</sup> yr<sup>-1</sup>, and P uptake by 1.8 kg P ha<sup>-1</sup> yr<sup>-1</sup> than NT. There was no consistent beneficial effect of straw retention on plant yield, N uptake and P uptake in different years. Plant yield, N uptake and P uptake increased with N fertilization at both sites, with up to the maximum rate of applied N at 100 kg N ha<sup>-1</sup> in 3 of 4 years at Breton and in 2 of 4 years at Ellerslie. In conclusion, our findings suggested some beneficial impact of occasional tillage of long-term NT soil on crop yield and nutrient uptake.</p>


2002 ◽  
Vol 139 (3) ◽  
pp. 231-243 ◽  
Author(s):  
A. J. A. VINTEN ◽  
B. C. BALL ◽  
M. F. O'SULLIVAN ◽  
J. K. HENSHALL

The effects of ploughing or no-tillage of long-term grass and grass-clover swards on changes in organic C and N pools and on CO2 and denitrified gas emissions were investigated in a 3-year field experiment in 1996–99 near Penicuik, Scotland. The decrease in soil C content between 1996 and 1999 was 15·3 t/ha (95% confidence limits were 1·7–28·9 t/ha). Field estimates of CO2 losses from deep-ploughed, normal-ploughed and no-tillage plots were 3·1, 4·5 and 4·6 t/ha over the sampling periods (a total of 257 days) in 1996–98. The highest N2O fluxes were from the fertilized spring barley under no-tillage. Thus no-tillage did not reduce C emissions, caused higher N2O emissions, and required larger inputs of N fertilizer than ploughing. By contrast, deep ploughing led to smaller C and N2O emissions but had no effect on yields, suggesting that deep ploughing might be an appropriate means of conserving C and N when leys are ploughed in. Subsoil denitrification losses were estimated to be 10–16 kg N/ha per year by measurement of 15N emissions from incubated intact cores. A balance sheet of N inputs and outputs showed that net N mineralization over 3 years was lower from plots receiving N fertilizer than from plots receiving no fertilizer.


2010 ◽  
Vol 90 (5) ◽  
pp. 655-666 ◽  
Author(s):  
Y. Gan ◽  
A M Johnston ◽  
J D Knight ◽  
C. McDonald ◽  
C. Stevenson

Understanding N dynamics in relation to cultural practices may help optimize N management in annual legume crops. This study was conducted at six environsites (location × year combinations) in southern Saskatchewan, 2004-2006, to quantify N uptake, N2 fixation, and N balance in chickpea (Cicer arietinum L.) in relation to cultivar choice, cropping systems, rhizobial inoculation, and soil N fertility. The cultivars Amit, CDC Anna, CDC Frontier, and CDC Xena were grown at N fertilizer rates of 0, 28, 56, 84, and 112 kg N ha-1 with no Rhizobium and at 0, 28, and 84 kg N ha-1 combined with Rhizobium inoculation, evaluated in both conventional tilled-fallow and continuously cropped no-till systems. Flax was used as a non-N-fixing reference crop. The cultivar CDC Xena had the lowest yield (1.57 Mg ha-1) and seed N uptake (54.4 kg N ha-1), with N use efficiency (NUE, 13.2 kg seed N kg-1) being 17% less than the average of the other cultivars. Consequently, N balance (N input via fertilizer and N-fixation minus N exported) was -32.4 kg N ha-1 for CDC Xena and less negative than the average of the other cultivars (-39.8 kg N ha-1). Inoculated chickpea took up 10 kg ha-1 more N into the seed and 5 kg ha-1 more N into the straw than chickpea that was not inoculated. The amount of N fixed as a percentage of total N uptake was 15% for non-inoculated chickpea and 29% for inoculated chickpea, resulting in negative N balance regardless of cropping system. Increasing N fertilizer rates decreased NUE, with the rate of decrease being greater for non-inoculated chickpea compared with inoculated chickpea. We conclude that optimum productivity of chickpea can be achieved with application of effective Rhizobium inoculants, and that best N management practices must be adopted in the succeeding crops due to a large negative N balance after a chickpea crop.Key words: Chickpea, Cicer arietinum, N fertilizer, N2 fixation, Rhizobium inoculants, N balance, nitrogen use efficiency, N uptake


2020 ◽  
Author(s):  
Peiyu Cao ◽  
Chaoqun Lu ◽  
Jien Zhang ◽  
Avani Khadilkar

Abstract. The increasing demands of food and biofuel have promoted century-long cropland expansion and nitrogen (N) fertilizer enrichment in the United States. However, the role of such long-term human activities in influencing the spatiotemporal patterns of Ammonia (NH3) emission remains poorly understood. Based on an empirical model including climate, soil properties, N fertilizer management, and cropland distribution history, we have quantified monthly fertilizer-induced NH3 emission across the contiguous U.S. from 1900 to 2015. Our results show that N fertilizer-induced NH3 emission in the U.S. has increased from


1992 ◽  
Vol 22 (1) ◽  
pp. 82-87 ◽  
Author(s):  
M.F. Proe ◽  
J. Dutch ◽  
H.G. Miller ◽  
J. Sutherland

The effects of N fertilizer on Corsican pine (Pinusnigra var. maritima (Ait.) Melv.) were studied for 22 years. Basal area increment significantly (p < 0.05) increased in response to N fertilizer for 3, 6, 11, and 13 years after applications ceased, in treatments that received 252, 504, 1008, and 1512 kg N•ha−1, respectively. Volume increment changed from a quadratic to a linear response to N level during the study period. Overall, the highest rate of N fertilizer increased the aboveground standing biomass by 42%, four-fifths of which occurred in stems. The response of crown components was variable, but there was evidence of a prolonged increase in foliage biomass due to N fertilizer. Initial retention of N within stands was sustained in the longer term, although N distribution altered. These results supported earlier predictions that the growth response to N fertilizer could be sustained through internal cycling, without increasing demands for N uptake from the soil. Increase of N within stands (over and above fertilizer inputs) was similar to estimated rates of atmospheric input, with indirect evidence of a positive feedback between increased foliage biomass and increased levels of N interception by crowns.


Sign in / Sign up

Export Citation Format

Share Document