Conclusions from the permanent plot experiment at Gilat, Israel: long-term (35 Y) effects of manure and fertilizer on crop yield, soil fertility, N uptake, and solutes leaching in soil

Author(s):  
Benayahu Bar-Yosef
2017 ◽  
Vol 5 (1) ◽  
pp. 42-50
Author(s):  
Nabin Rawal ◽  
Rajan Ghimire ◽  
Devraj Chalise

Balanced nutrient supply is important for the sustainable crop production. We evaluated the effects of nutrient management practices on soil properties and crop yields in rice (Oryza sativa L.) - rice - wheat (Triticum aestivum L.) system in a long-term experiment established at National Wheat Research Program (NWRP), Bhairahawa, Nepal. The experiment was designed as a randomized complete block experiment with nine treatments and three replications. Treatments were applied as: T1- no nutrients added, T2- N added; T3- N and P added; T4- N and K added; T5- NPK added at recommended rate for all crops. Similarly, T6- only N added in rice and NPK in wheat at recommended rate; T7- half N; T8- half NP of recommended rate for both crops; and T9- farmyard manure (FYM) @10 Mg ha-1 for all crops in rotation. Results of the study revealed that rice and wheat yields were significantly greater under FYM than all other treatments. Treatments that did not receive P (T2, T3, T7, T8) and K (T2, T4) had considerably low wheat yield than treatments that received NPK (T5) and FYM (T9). The FYM lowered soil pH and improved soil organic matter (SOM), total nitrogen (TN), available phosphorus (P), and exchangeable potassium (K) contents than other treatments. Management practices that ensure nutrient supply can increase crop yield and improve soil fertility status.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 42-50


2016 ◽  
Vol 5 (3) ◽  
pp. 32 ◽  
Author(s):  
Miles Dyck ◽  
Sukhdev S. Malhi ◽  
Marvin Nyborg ◽  
Dyck Puurveen

<p>Pre-seeding tillage of long-term no-till (NT) land may alter crop production by changing the availability of some nutrients in soil. Effects of short-term (4 years) tillage (hereafter called reverse tillage [RT]) of land previously under long-term (29 or 30 years) NT, with straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha<sup>-1</sup> in SRet, and 0 kg N ha<sup>-1</sup> in SRem plots), were determined on plant yield (seed + straw, or harvested as forage/silage at soft dough stage), and N and P uptake in growing seasons from 2010 to 2013 at Breton (Gray Luvisol [Typic Cryoboralf] loam) and from 2009 to 2012 at Ellerslie (Black Chernozem [Albic Argicryoll] loam), Alberta, Canada. Plant yield, N uptake and P uptake tended to be greater with RT compared to NT in most cases at both sites, although significant in a few cases only at Ellerslie. On average over both sites, RT produced greater plant yield by 560 kg ha<sup>-1</sup> yr<sup>-1</sup>, N uptake by 5.8 kg N ha<sup>-1</sup> yr<sup>-1</sup>, and P uptake by 1.8 kg P ha<sup>-1</sup> yr<sup>-1</sup> than NT. There was no consistent beneficial effect of straw retention on plant yield, N uptake and P uptake in different years. Plant yield, N uptake and P uptake increased with N fertilization at both sites, with up to the maximum rate of applied N at 100 kg N ha<sup>-1</sup> in 3 of 4 years at Breton and in 2 of 4 years at Ellerslie. In conclusion, our findings suggested some beneficial impact of occasional tillage of long-term NT soil on crop yield and nutrient uptake.</p>


1996 ◽  
Vol 76 (4) ◽  
pp. 559-571 ◽  
Author(s):  
P. R. Poulton

Maintaining soil fertility and sustaining or increasing crop yield is of worldwide importance. Many factors impact upon the complex biological, chemical and physical processes which govern soil fertility. Changes in fertility caused by acidification, declining levels of organic matter, or P and K status may take many years to appear. These properties can in turn be affected by external influences such as atmospheric pollution, global change, or changes in land management practice. Long-term experiments provide the best practical means of studying changes in soil properties and processes and providing information for farmers, scientists and policy makers. This paper shows how the experiments run at Rothamsted in southeast England continue to provide data which are highly relevant to today's agriculture and wider environmental concerns. Examples are given of how crop yield is affected by soil organic matter, by pests and disease and by P nutrition. The effect of atmospheric pollution on soil acidity and the mobilization of heavy metals are also examined. The need for making better use of existing long-term experiments is stressed. Key words: Soil fertility, sustainability, long-term experiments, global change


2018 ◽  
Vol 69 (5) ◽  
pp. 488 ◽  
Author(s):  
Claudio H. M. da Costa ◽  
Antonio C. A. Carmeis Filho ◽  
Carlos A. C. Crusciol ◽  
Rogério P. Soratto ◽  
Tiara M. Guimarães

In tropical conservation agricultural systems, crop yield is limited by soil acidity and root-growth inhibition, especially under intensive crop rotation. This study evaluated the effect of surface applications of lime and phosphogypsum in improving soil fertility and crop yield in a tropical region. Four treatments were evaluated: control (without soil amendment); and application phosphogypsum (2.1 + 2.1 + 2.1 Mg ha–1), lime (2.7 + 2.0 + 2.0 Mg ha–1), and a combination of lime and phosphogypsum at the given rates, applied in 2002, 2004 and 2010, respectively. We evaluated the soil chemical properties, root development, plant nutrition, yield components and grain yield of 10 crops over 4 years using five species: maize (Zea mays), crambe (Crambe abyssinica), cowpea (Vigna unguiculata), wheat (Triticum aestivum) and common bean (Phaseolus vulgaris). Our long-term results demonstrate the benefits of surface liming in alleviating subsoil acidity, reducing Al3+ toxicity, improving availability of Ca2+ and Mg2+, and increasing accumulation of soil organic matter in all soil profiles at depths up to 0.60 m. For maize and crambe, adding phosphogypsum increased development of plants and reproductive structures, which increased grain yield. Phosphogypsum exhibited synergistic effects in association with lime for maize and common bean. Phosphogypsum did not have an effect on cowpea and wheat, whereas surface liming was essential to improve plant nutrition, grain yield and wheat grain quality. The combination of both soil amendments is an important tool to reduce the soil acidification process, resulting in the highest levels of Ca2+ and Mg2+ and the highest base-saturation values in the topsoil layers (0–0.20 m) over time. Our long-term results showed the viability of surface liming plus phosphogypsum for improving tropical soil fertility, which can reflect an increase in grain yield and contribute to the sustainability of agricultural systems under intensive land use in highly weathered areas.


Soil Research ◽  
2021 ◽  
Author(s):  
Gabriel Barth ◽  
Lenir Fátima Gotz ◽  
Nerilde Favaretto ◽  
Volnei Pauletti

AGROFOR ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Attila TOMÓCSIK ◽  
Marianna MAKÁDI ◽  
Viktória OROSZ ◽  
Tibor ARANYOS ◽  
Ibolya DEMETER ◽  
...  

Due to the increasing number of sewage cleaning plants, the amount of sewagesludge also increases. We have to solve the environmentally sound disposal of thesludge. Results of many experiments show that sewage sludge and sewage sludgecompost can be recycled as nutrient suppling material in agriculture. Municipalsewage sludge compost could cause the occurrence and accumulation of toxicelements in the soil. A small-plot experiment with sewage sludge compost wasestablished in the spring of 2003. The applied compost contains 40% sewagesludge, 25% straw, 30% rhyolite, 5% betonite. The small-plot experiment was retreatedin the autumn of 2006, 2009, 2012and 2015. There are 4 treatments in fiveblocks, where the sewage sludge compost was applied at a rate of 0, 9, 18 and 27tha-1 and then ploughed into the soil. Triticale as autumn cereal, maize and greenpea as spring crops were sown in crop rotation every year. Plant samples werecollected before harvesting. In this paper the results of crop yield between 2010-2012 are presented. Crops of triticale and maize were higher in the treated plotsthan in control one in 2010 and 2011. Treatment effect was not observed on greenpea yield.The results show that the effect of applied compost doses depends onplant species and time. Our aim is to maintain this unique long-term experiment forstudying the composted sewage sludge as a nutrient and organic matter source,applying it similarly to the farmyard manure.


Sign in / Sign up

Export Citation Format

Share Document