No-tillage culture and nitrogen fertilizer management for burley tobacco production

2016 ◽  
Vol 155 (4) ◽  
pp. 599-612 ◽  
Author(s):  
C. ZOU ◽  
R. C. PEARCE ◽  
J. H. GROVE ◽  
M. S. COYNE

SUMMARYFew studies have investigated nitrogen (N) fertilizer management in no-tillage (NT) tobacco (Nicotiana tobacumL.) production systems, even though N fertilization is known to influence tobacco cured leaf yield and quality. The present study evaluated how tillage practice and N fertilizer rate affected burley tobacco agronomic performance, plant available nitrogen (PAN) supply, and leaf chemical constituents. In 2012 and 2013, three N fertilizer rates (0, 140 and 280 kg N/ha) were introduced as split-plots within a long-term NT and conventional tillage (CT) (mouldboard plough) comparison study. Results (2007–2013) showed that the effect of tillage on tobacco yield depended on seasonal weather; NT tobacco appeared to have lower yield than CT tobacco in seasons with <450 mm growing season rainfall, but similar yields when rainfall was >500 mm. In 2012 (432 mm rainfall; 84% of the long-term seasonal mean), leaf SPAD reading, leaf nitrate concentration, total nitrogen concentration at the topping day (i.e. removal of flowers/buds at the tops of the plants) and cured leaf nicotine and alkaloid content suggested that N deficiency was more pronounced in NT than CT at the lowest N fertilizer rate. The PAN supply, as measured by a modifiedin situresin core method, was similar in 2012 between NT and CT, suggesting that plant factors may have had a role in N uptake efficiency. This scenario did not repeat in 2013 (706 mm rainfall; 137% of the long-term seasonal mean). Even though N fertilization rates were identical for both tillage practices in 2012 and 2013, PAN was lower, on average, in 2012. Because N uptake is largely the result of mass flow, the impact of reduced root density in NT tobacco would be expected to be more pronounced in a season such as 2012, when water was limited. Banding N close to the tobacco root system and/or side-dressing some portion of N may be recommended strategies to improve N use efficiency in NT burley tobacco production.

2012 ◽  
Vol 92 (7) ◽  
pp. 1389-1401
Author(s):  
R. E. Karamanos ◽  
F. Selles ◽  
D. C. James ◽  
F. C. Stevenson

Karamanos, R. E., Selles, F., James, D. C. and Stevenson, F. C. 2012. Nitrogen management of fallow crops in Canadian prairie soils. Can. J. Plant Sci. 92: 1389–1401. The ability of fallow to supply nitrogen (N) to crops has been questioned, particularly for crops with greater N requirements. A study was conducted to determine canola (Brassica napus L.) and wheat (Triticum aestivum L.) responses to a range of N fertilizer rates (0–75 kg N ha−1 for canola and 0–50 kg N ha−1 for wheat) at 17 fallow sites across Saskatchewan and Alberta, Canada, from 2003 to 2005. Yield and N uptake responses to progressively greater N fertilizer rates were curvilinear for both crops. Maximum yield occurred with 76 kg N ha−1 for canola yield (2190 kg ha−1) and 47 kg N ha−1 for wheat (2910 kg ha−1). Maximum N uptake occurred at about 90 kg N ha−1 for both crops. Wheat grain yield and N uptake responses were mostly associated with normalized difference vegetation index (NDVI) at anthesis or flag leaf, whereas canola yields and N uptake were most associated with NDVI at five-leaf or bolting, or Cardy Nitrate meter at bolting. The preceding relationships were most apparent at the highest N fertilizer rates. Canola and wheat water use were not affected by N fertilizer rate, but water use efficiency increased linearly for both crops as N fertilizer rate was increased.


Author(s):  
Faridah Manaf ◽  
Roslan Ismail ◽  
Arina Shairah Abdul Sukor

Reducing nitrogen (N) fertilizer rate have beneficial effect on N uptake by plants. Studies on reducing N rate in sweet potato and beetroot to improve their growth and yield are well documented but the effect of decreased N rate on N uptake by leafy vegetables are limited. A glasshouse experiment was conducted to determine the effect of different N rate on N uptake of green spinach. Treatments evaluated were (i) soil alone, and (ii) different N fertilizer rate (12, 24, 36, 60, 90 and 120 kg N/ha). Treatments were applied at 14 days after seeding (DAS) at a uniform rate of 2 t/ha. Results revealed that moderate N input between 12 to 36 kg N/ha improved N uptake and yield of spinach compared with lower rate of N input (0 to 12 kg N/ha) but higher N level of 90 kg N/ha was most effective in improving N uptake and fresh yield. The effectiveness of N input at 90 kg N/ha corresponded to the optimum retention of soil N resulting in timely availability of N for uptake by spinach leading to higher yield. Although treatment with excess N (120 kg N/ha) improved N uptake, the decline in yield was because of soil nutrient imbalance that inhibited other nutrients required by plants for growth and development. The findings from the study suggest that reducing N fertilizer rate improves N uptake in leafy vegetables without reducing productivity depending on their specific N requirement.


2019 ◽  
Author(s):  
◽  
G. Mac Bean

Nitrogen fertilizer recommendations in corn (Zea mays L.) that match crop N need are imperative to increasing profitability and preventing environmental contamination. However, processes influencing corn production (i.e. leaching and denitrification) are affected by soil and weather characteristics making it difficult to know when and how much N fertilizer to apply to match crop N need. In an effort to improve N fertilizer management, this dissertation explored the ability of soil, weather, and microbial respiration measurements to inform N rate recommendations based on hydrologic soil grouping (HG) and drainage classifications. Using 49 sites over three growing seasons (2014-2016), five HG-based groups were delineated. Following linear regression, soil and weather measurements were found related to the economical optimum N fertilizer rate (EONR) unique to each of the respective groups resulting in five separate N recommendation models. Furthermore, a total of 182 site-years of corn N response trial data were gathered across six U.S. Midwest Corn Belt states to validate these models. Two analyses were performed, one for comparing the HG-based model recommendations to EONR and another comparing HG-based model recommendations to state-specific corn N rate tools. Across all site-years and N timings the HG-based N recommendations were within 34 kg N ha-1 of EONR 38% of the time. State-specific N recommendation tools were within 34 kg N ha-1 of EONR 32% of the time. Over all site-years the HG-based models were more sensitive to site-specific crop N demand. In addition, when analyzed within each individual state, significant differences between approaches were observed. While showing some promise, these results suggest more research is required to determine the applicability of the HG-based model approach for corn N fertilizer management.


2000 ◽  
Vol 80 (1) ◽  
pp. 203-212 ◽  
Author(s):  
N. Ziadi ◽  
R. R. Simard ◽  
G. Allard ◽  
G. Parent

Soil N availability is an important factor in forage grass production. Maximising N fertilizer efficiency is essential to improve profitability and to reduce the environmental risk associated with residual excess soil N. The objectives of this study were (i): to determine the effects of N fertilizer on yield, N uptake and NO3–N concentration of forage grasses produced in Western Quebec; and (ii) to compare spring soil NO3−measured by anionic exchange membranes (NO3AEMs) and by water extraction (NO3w) as a criterion to predict fertilizer N requirements of forage grasses. The yield response of grasses, especially timothy (Phleum pratense L.), to different rates of NH4NO3 (0 to 240 kg N ha−1) on heavy clay soils (Humic Gleysols) was studied from 1994 to 1996 at four sites in the Abitibi-Temiscamingue area, Quebec (Canada). Nitrogen significantly (P < 0.001) increased forage yield, N uptake, and NO3–N concentration. The economically optimum N fertilizer rate (Nop) for forage yield varied from 25 to 240 kg N ha−1 depending on sites and years, and averaged 125 kg N ha−1. The Nop can be predicted more adequately by NO3AEMs (R2 = 0.45) than by NO3w (R2 = 0.09). Based only on the relationship between the relative yield and spring soil nitrate, NO3AEMs could be used as a criterion for fertilizer N recommendation of forage grasses in this cool continental climate. Key words: N fertilizer, nitrate, grass, economically optimum N fertilizer rate


HortScience ◽  
2004 ◽  
Vol 39 (1) ◽  
pp. 75-79
Author(s):  
John M. Swiader ◽  
William H. Shoemaker

Field experiments were conducted over a 5-year period (1994-98) to determine the effect of various cropping systems (rotations) on fertilizer N requirements in processing pumpkins [Cucurbita moschata (Duchesne ex Lam.) Duchesne ex Poir.] on medium- to fine-textured soil. Treatments consisted of a factorial combination of five N fertilization rates (0, 56, 112, 168, 224 kg·ha-1 N) and four pumpkin cropping systems: 1) pumpkins following corn (Zea mays L.); 2) pumpkins following soybeans [Glycine max (L.) Merrill]; 3) pumpkins following 2-years corn; and 4) pumpkins following fallow ground. Cropping systems were chronologically and spatially arranged in two complete cycles, with pumpkin studies taking place in 1996 and 1998. Averaged over the two studies, the optimal N fertilization rate for highest total weight of ripe fruit following soybeans was estimated at 109 kg·ha-1 N, compared to 128 kg·ha-1 N following fallow ground, even though yields were similar, suggesting a soybean N-credit of 19 kg·ha-1 N. Concurrently, the N fertilizer rate for highest total ripe fruit weight following corn was estimated at 151 kg·ha-1 N, and 178 kg·ha-1 following 2-years corn, indicating a negative rotation effect on pumpkin N requirements of 23 and 50 kg·ha-1 N, respectively. Minimum N fertilizer requirements, the N fertilizer rate associated with a ripe fruit yield of 50 t·ha-1, were calculated at 45, 37, 69, and 47 kg·ha-1 N in the respective cropping systems. Negative effects from excessive N fertilization were greater in pumpkins following soybeans than in pumpkins following corn or 2-years corn, with reductions in total ripe fruit weight of 21%, 9%, and 3%, respectively, at the highest N rate. A critical level for preplant soil NO 3-N of 17.6 mg·kg-1 was identified above which there was little or no pumpkin yield response to N fertilization.


2002 ◽  
Vol 139 (3) ◽  
pp. 245-256 ◽  
Author(s):  
A. J. A. VINTEN ◽  
B. C. BALL ◽  
M. F. O'SULLIVAN ◽  
J. K. HENSHALL ◽  
R. HOWARD ◽  
...  

A 3-year field experiment was conducted in 1996–98 near Penicuik, Scotland, to investigate the fate of N released after cultivation of previously long-term grass and grass-clover swards. The effects of timing of cultivations (autumn and spring), tillage methods (no tillage, ploughing to 200 mm and ploughing to 300 mm) and fertilizer N for spring (0, 40, 80 and 120 kg N/ha) and winter barley (0, 60, 120, 180 kg N/ha) on yield, N uptake and nitrate leaching were measured.In 1996, after spring cultivation, on plots previously in grass, spring barley grain yield and N uptake did not respond to N fertilizer, but on plots previously in grass-clover there was a nearly linear response to N. In 1997, the spring barley responded to N fertilizer at all levels. Yields of 1997 winter barley after grass did not show a response above 60 kg N/ha, but increased with fertilizer N up to at least 120 kg N/ha after grass-clover. In 1998, there were strong effects of N fertilizer and cultivation method on grain yield and N uptake of both spring barley and winter barley. Winter barley grain yield was significantly higher in plots previously in grass than in plots previously in grass-clover in 1998, though not in 1997. Winter barley yields were higher than spring barley at the same fertilizer N level.Throughout the 3 years, the no-tillage plots had consistently lower yields than the ploughed plots, but there was no consistent difference between the ploughed and deep ploughed treatments. There were strong interactive effects between tillage and previous sward in 1997. No-tillage under spring barley generally yielded lower than ploughing due to difficulties in weed control and the frequent anaerobic conditions in the soil.Annual leaching losses were relatively small (6·4–19·6 kg N/ha). In 1996–97, more N was leached from the plots left in stubble following spring barley than from those planted with winter barley after either spring barley or grass in 1996, but in 1997–98 more N was leached from plots in winter barley than from those in over-winter stubble. Nitrate leaching was least under no-tillage, though the effect was not significant.


2018 ◽  
Vol 43 (3) ◽  
pp. 243-260
Author(s):  
Nurudeen Abdul Rahman ◽  
Asamoah Larbi ◽  
Andrews Opoku ◽  
Francis Marthy Tetteh ◽  
Irmgard Hoeschle-Zeledon

Sign in / Sign up

Export Citation Format

Share Document