Potential Application of Selected Sulfur-Oxidizing Bacteria and Different Sources of Sulfur in Plant Growth Promotion under Different Moisture Conditions

2020 ◽  
Vol 51 (6) ◽  
pp. 735-745 ◽  
Author(s):  
Ahmad Ali Pourbabaee ◽  
Shirin Koohbori Dinekaboodi ◽  
Hossein Mir Seyed Hosseini ◽  
Hossein Ali Alikhani ◽  
Somayeh Emami
2014 ◽  
Vol 8 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Anandham Rangasamy ◽  
Janahiraman Veeranan ◽  
Indira Gandhi Pandiyan ◽  
Wo Kwon Soon ◽  
Yook Chung Keun ◽  
...  

2022 ◽  
Vol 11 (1) ◽  
pp. e29611124799
Author(s):  
Cristiane Rodrigues Silva ◽  
Rafael Monção Miller ◽  
Bárbara Costa Pereira ◽  
Lílian Aveleda ◽  
Victor Augustus Marin

A genomic analysis of the potential application of a Serratia marcescens strain in the plant-growth promotion. We performed whole-genome sequencing of Serratia marcescens isolated from a Minas Frescal Cheese. The genomic repertoire revealed a bacterium of agricultural and biotechnological interest. In the plant-growth promotion traits, we highlight genes encoding proteins possibly responsible for the biosynthesis of phytohormone indole acetic acid, organic compounds that act in iron uptake, and the Phosphate solubilization system. Genes encoding for enzymes like the versatile L-asparaginase stimulates the development of seeds and grains and can benefit the food industry due to a mitigation effect on acrylamide and notably, has medical applications as a chemotherapeutic agent or is applicable by its antimicrobial and anti-inflammatory properties. Moreover, functional diversity of genes encoding for resistance to different metals and metabolism of xenobiotics genes can be found in this strain, reinforcing its biotechnological potential. The versatile enzymes that can be produced by S. marcescens benefit the food, pharmaceutical, textile, agronomic, and cosmetic industries. The relevant genetic systems of S. marcescens described here may be used to promote plant growth and health and improve the environment. To the best of our knowledge, this is the first genome sequence report on S. marcescens isolated from cheese, with potential application as promoting plant growth and providing a baseline for future genomic studies on the development of this species.


2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


2021 ◽  
pp. 104961
Author(s):  
Sravani Ankati ◽  
Vadlamudi Srinivas ◽  
Sambangi Pratyusha ◽  
Subramaniam Gopalakrishnan

2021 ◽  
Vol 12 (2) ◽  
pp. 480-490
Author(s):  
Ahsanul Salehin ◽  
Ramesh Raj Puri ◽  
Md Hafizur Rahman Hafiz ◽  
Kazuhito Itoh

Colonization of a biofertilizer Bacillus sp. OYK strain, which was isolated from a soil, was compared with three rhizospheric and endophytic Bacillus sp. strains to evaluate the colonization potential of the Bacillus sp. strains with a different origin. Surface-sterilized seeds of tomato (Solanum lycopersicum L. cv. Chika) were sown in the sterilized vermiculite, and four Bacillus sp. strains were each inoculated onto the seed zone. After cultivation in a phytotron, plant growth parameters and populations of the inoculants in the root, shoot, and rhizosphere were determined. In addition, effects of co-inoculation and time interval inoculation of Bacillus sp. F-33 with the other endophytes were examined. All Bacillus sp. strains promoted plant growth except for Bacillus sp. RF-37, and populations of the rhizospheric and endophytic Bacillus sp. strains were 1.4–2.8 orders higher in the tomato plant than that of Bacillus sp. OYK. The plant growth promotion by Bacillus sp. F-33 was reduced by co-inoculation with the other endophytic strains: Klebsiella sp. Sal 1, Enterobacter sp. Sal 3, and Herbaspirillum sp. Sal 6., though the population of Bacillus sp. F-33 maintained or slightly decreased. When Klebsiella sp. Sal 1 was inoculated after Bacillus sp. F-33, the plant growth-promoting effects by Bacillus sp. F-33 were reduced without a reduction of its population, while when Bacillus sp. F-33 was inoculated after Klebsiella sp. Sal 1, the effects were increased in spite of the reduction of its population. Klebsiella sp. Sal 1 colonized dominantly under both conditions. The higher population of rhizospheric and endophytic Bacillus sp. in the plant suggests the importance of the origin of the strains for their colonization. The plant growth promotion and colonization potentials were independently affected by the co-existing microorganisms.


Sign in / Sign up

Export Citation Format

Share Document