scholarly journals Genomic analysis and plant growth-promoting potential of a Serratia marcescens isolated from food

2022 ◽  
Vol 11 (1) ◽  
pp. e29611124799
Author(s):  
Cristiane Rodrigues Silva ◽  
Rafael Monção Miller ◽  
Bárbara Costa Pereira ◽  
Lílian Aveleda ◽  
Victor Augustus Marin

A genomic analysis of the potential application of a Serratia marcescens strain in the plant-growth promotion. We performed whole-genome sequencing of Serratia marcescens isolated from a Minas Frescal Cheese. The genomic repertoire revealed a bacterium of agricultural and biotechnological interest. In the plant-growth promotion traits, we highlight genes encoding proteins possibly responsible for the biosynthesis of phytohormone indole acetic acid, organic compounds that act in iron uptake, and the Phosphate solubilization system. Genes encoding for enzymes like the versatile L-asparaginase stimulates the development of seeds and grains and can benefit the food industry due to a mitigation effect on acrylamide and notably, has medical applications as a chemotherapeutic agent or is applicable by its antimicrobial and anti-inflammatory properties. Moreover, functional diversity of genes encoding for resistance to different metals and metabolism of xenobiotics genes can be found in this strain, reinforcing its biotechnological potential. The versatile enzymes that can be produced by S. marcescens benefit the food, pharmaceutical, textile, agronomic, and cosmetic industries. The relevant genetic systems of S. marcescens described here may be used to promote plant growth and health and improve the environment. To the best of our knowledge, this is the first genome sequence report on S. marcescens isolated from cheese, with potential application as promoting plant growth and providing a baseline for future genomic studies on the development of this species.

Author(s):  
Bianca de Melo Silveira dos Santos ◽  
Maura Santos dos Reis de Andrade Silva ◽  
Davy William Hidalgo Chávez ◽  
Everlon Cid Rigobelo

Currently, agricultural practices have been undergoing intense transformations, imposing major challenges such as maintaining productivity with lower production costs and environmental impacts. One of the alternatives to meet these requirements is the use of plant growth promoting bacteria, including Bacillus subtilis. However, different isolates may express different aspects and levels of plant growth promotion. The present study aimed to verify the genetic and nutritional diversity of eight B. subtilis isolates, demonstrating different aspects and levels of plant growth promotion. Eight B. subtilis isolates were analyzed as to their nutritional diversity by BiologEcoPlate TM kit, genetic diversity by Box-PCR, and a trial in greenhouse conditions. The experimental design in greenhouse trial was completely randomized with 9 treatments and five replicates, resulting in 45 pots. Treatments were eight Bacillus subtilis strains, and a control treatment using plants without bacterial inoculation. Isolates 290 and 287 are genetically similar, while isolates 248 and 263 also showed similarity. Genetic and substrate consumption (carbon) analyses showed differences and similarities among isolates, allowing the distribution of isolates into different groups. It was observed that the isolate with the highest ability to promote plant growth was the only isolate that consumed glycyl-L- glutamic acid. These results open the way for further investigations in an attempt to clarify what are the conditions and / or characteristics required by isolates for the plant growth promotion to be more effective.


2021 ◽  
Vol 11 (5) ◽  
pp. 2233
Author(s):  
Maria J. Ferreira ◽  
Angela Cunha ◽  
Sandro Figueiredo ◽  
Pedro Faustino ◽  
Carla Patinha ◽  
...  

Root−associated microbial communities play important roles in the process of adaptation of plant hosts to environment stressors, and in this perspective, the microbiome of halophytes represents a valuable model for understanding the contribution of microorganisms to plant tolerance to salt. Although considered as the most promising halophyte candidate to crop cultivation, Salicornia ramosissima is one of the least-studied species in terms of microbiome composition and the effect of sediment properties on the diversity of plant-growth promoting bacteria associated with the roots. In this work, we aimed at isolating and characterizing halotolerant bacteria associated with the rhizosphere and root tissues of S. ramosissima, envisaging their application in saline agriculture. Endophytic and rhizosphere bacteria were isolated from wild and crop cultivated plants, growing in different estuarine conditions. Isolates were identified based on 16S rRNA sequences and screened for plant-growth promotion traits. The subsets of isolates from different sampling sites were very different in terms of composition but consistent in terms of the plant-growth promoting traits represented. Bacillus was the most represented genus and expressed the wider range of extracellular enzymatic activities. Halotolerant strains of Salinicola, Pseudomonas, Oceanobacillus, Halomonas, Providencia, Bacillus, Psychrobacter and Brevibacterium also exhibited several plant-growth promotion traits (e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization). Considering the taxonomic diversity and the plant-growth promotion potential of the isolates, the collection represents a valuable resource that can be used to optimize the crop cultivation of Salicornia under different environmental conditions and for the attenuation of salt stress in non-halophytes, considering the global threat of arable soil salinization.


2021 ◽  
Vol 16 (8) ◽  
pp. 75-80
Author(s):  
Pitchaiah Pelapudi ◽  
Sasikala Ch ◽  
Swarnabala Ganti

In the present rapid growing world, need for a sustainable agricultural practice which helps in meeting the adequate food demand is much needed. In this context, plant growth promoting bacteria were brought into the spot light by the researchers. Though the plant growth promoting bacteria have several beneficial applications, due to some of the disadvantages in the field conditions, they lagged behind. In the current research work, native PGPR were isolated from the rhizosphere soil samples of maize with an aim to isolate the nitrogen fixing, phosphate solubilising and potash solubilising bacteria. Out of the several isolates, potent PGPR isolates viz., Paenibacillus durus PCPB067, Bacillus megaterium PCBMG041 and Paenibacillus glucanolyticus PCPG051 were isolated and identified by using the 16 S rRNA gene sequencing studies. Genomic DNA sequences obtained were deposited in the NCBI Genbank and accession numbers were assigned as MW793452, MW793456 and MW843633. In order to check the efficacy of the PGPR isolates, pot trials were conducted by taking maize as the host plant. Several parameters viz. shoot length, shoot weight, root length, root weight and weight of the seeds were tested in which PGP treatment showed good results (shoot length - 187±3.5 cm, shoot weight - 31±4 g, root length - 32±3.6 cm, root weight - 17±2 g, yield- 103.3±6.1 g) when compared to the chemical fertilizer treatment (shoot length - 177±3.5 cm, shoot weight - 25±3.6 g, root length - 24±3.5 cm, root weight - 14.6±1.52 g, yield- 85.6±7.6 g). Based on the results, it can be stated that these native PGPR isolates can be effectively used in the plant growth promotion of maize.


2020 ◽  
Vol 8 (2) ◽  
pp. 153 ◽  
Author(s):  
Francesca Luziatelli ◽  
Anna Grazia Ficca ◽  
Mariateresa Cardarelli ◽  
Francesca Melini ◽  
Andrea Cavalieri ◽  
...  

Distinctive strains of Pantoea are used as soil inoculants for their ability to promote plant growth. Pantoea agglomerans strain C1, previously isolated from the phyllosphere of lettuce, can produce indole-3-acetic acid (IAA), solubilize phosphate, and inhibit plant pathogens, such as Erwinia amylovora. In this paper, the complete genome sequence of strain C1 is reported. In addition, experimental evidence is provided on how the strain tolerates arsenate As (V) up to 100 mM, and on how secreted metabolites like IAA and siderophores act as biostimulants in tomato cuttings. The strain has a circular chromosome and two prophages for a total genome of 4,846,925-bp, with a DNA G+C content of 55.2%. Genes related to plant growth promotion and biocontrol activity, such as those associated with IAA and spermidine synthesis, solubilization of inorganic phosphate, acquisition of ferrous iron, and production of volatile organic compounds, siderophores and GABA, were found in the genome of strain C1. Genome analysis also provided better understanding of the mechanisms underlying strain resistance to multiple toxic heavy metals and transmission of these genes by horizontal gene transfer. Findings suggested that strain C1 exhibits high biotechnological potential as plant growth-promoting bacterium in heavy metal polluted soils.


2016 ◽  
Vol 46 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Ariana Alves Rodrigues ◽  
Marcus Vinicius Forzani ◽  
Renan de Souza Soares ◽  
Sergio Tadeu Sibov ◽  
José Daniel Gonçalves Vieira

ABSTRACT Microorganisms play a vital role in maintaining soil fertility and plant health. They can act as biofertilizers and increase the resistance to biotic and abiotic stress. This study aimed at isolating and characterizing plant growth-promoting bacteria associated with sugarcane, as well as assessing their ability to promote plant growth. Endophytic bacteria from leaf, stem, root and rhizosphere were isolated from the RB 867515 commercial sugarcane variety and screened for indole acetic acid (IAA) production, ability to solubilize phosphate, fix nitrogen and produce hydrogen cyanide (HCN), ammonia and the enzymes pectinase, cellulase and chitinase. A total of 136 bacteria were isolated, with 83 of them presenting some plant growth mechanism: 47 % phosphate solubilizers, 26 % nitrogen fixers and 57 % producing IAA, 0.7 % HCN and chitinase, 45 % ammonia, 30 % cellulose and 8 % pectinase. The seven best isolates were tested for their ability to promote plant growth in maize. The isolates tested for plant growth promotion belong to the Enterobacteriaceae family and the Klebsiella, Enterobacter and Pantoea genera. Five isolates promoted plant growth in greenhouse experiments, showing potential as biofertilizers.


2015 ◽  
Vol 9 (3) ◽  
pp. 24-37 ◽  
Author(s):  
Mohammed Faisal Ansari ◽  
Devayani R. Tipre ◽  
Shailesh R. Dave

Organic farming is gaining popularity where bio-inoculants could play a key role in promoting the growth of plants. The liquid biofertilizers concept is new to farmers and developed recently. Lots of liquid biofertilizers formulations and field efficiency were shown in the past by various researchers, but the plant growth promoting (PGP) efficiency of the liquid biofertilizers isolates were not reported till date. In the present work 6 different commercially available liquid biofertilizers were used to isolate the organism. These isolated cultures were used to study their PGP efficiency with respect to phosphate solubilization and production of EPS, IAA, siderophore, ammonia, chitinase, ACC-deaminase and HCN. The phosphate solubilization was shown up to 303 g/ml by APS isolate. EPS production was shown by using different C sources and production up to 24 g/l was shown by studied isolated. Most of the organisms studied were able to produce IAA and highest production was shown up to 20 g/ml. More than 65% studied isolates showed siderophore and ACC-deaminase production. The present study shows that the commercial liquid biofertilizer isolates possess multiple traits of plant growth promotion. DOI: http://dx.doi.org/10.3126/ijls.v9i3.12463   International Journal of Life Sciences 9 (3): 2015; 24-37


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Kanza Batool ◽  
Fatima tuz Zahra ◽  
Yasir Rehman

Arsenic (As) is a well-known toxic metalloid found naturally and released by different industries, especially in developing countries. Purple nonsulfur bacteria (PNSB) are known for wastewater treatment and plant growth promoting abilities. As-resistant PNSB were isolated from a fish pond. Based on As-resistance and plant growth promoting attributes, 2 isolates CS2 and SS5 were selected and identified as Rhodopseudomonas palustris and Rhodopseudomonas faecalis, respectively, through 16S rRNA gene sequencing. Maximum As(V) resistance shown by R. faecalis SS5 and R. palustris CS2 was up to 150 and 100 mM, respectively. R. palustris CS2 showed highest As(V) reduction up to 62.9% (6.29±0.24 mM), while R. faecalis SS5 showed maximum As(III) oxidation up to 96% (4.8±0.32 mM), respectively. Highest auxin production was observed by R. palustris CS2 and R. faecalis SS, up to 77.18±3.7 and 76.67±2.8 μg mL−1, respectively. Effects of these PNSB were tested on the growth of Vigna mungo plants. A statistically significant increase in growth was observed in plants inoculated with isolates compared to uninoculated plants, both in presence and in absence of As. R. palustris CS2 treated plants showed 17% (28.1±0.87 cm) increase in shoot length and 21.7% (7.07±0.42 cm) increase in root length, whereas R. faecalis SS5 treated plants showed 12.8% (27.09±0.81 cm) increase in shoot length and 18.8% (6.9±0.34 cm) increase in root length as compared to the control plants. In presence of As, R. palustris CS2 increased shoot length up to 26.3% (21.0±1.1 cm), while root length increased up to 31.3% (5.3±0.4 cm), whereas R. faecalis SS5 inoculated plants showed 25% (20.7 ± 1.4 cm) increase in shoot length and 33.3% (5.4 ± 0.65 cm) increase in root length as compared to the control plants. Bacteria with such diverse abilities could be ideal for plant growth promotion in As-contaminated sites.


Sign in / Sign up

Export Citation Format

Share Document